Google新作Synthesizer:我们还不够了解自注意力
By 苏剑林 | 2020-05-25 | 91117位读者 |深度学习这个箱子,远比我们想象的要黑。
写在开头 #
据说物理学家费曼说过一句话[来源]:“谁要是说他懂得量子力学,那他就是真的不懂量子力学。”我现在越来越觉得,这句话中的“量子力学”也可以替换为“深度学习”。尽管深度学习已经在越来越多的领域证明了其有效性,但我们对它的解释性依然相当无力。当然,这几年来已经有不少工作致力于打开深度学习这个黑箱,但是很无奈,这些工作基本都是“马后炮”式的,也就是在已有的实验结果基础上提出一些勉强能说服自己的解释,无法做到自上而下的构建和理解模型的原理,更不用说提出一些前瞻性的预测。
本文关注的是自注意力机制。直观上来看,自注意力机制算是解释性比较强的模型之一了,它通过自己与自己的Attention来自动捕捉了token与token之间的关联,事实上在《Attention is All You Need》那篇论文中,就给出了如下的看上去挺合理的可视化效果:
但自注意力机制真的是这样生效的吗?这种“token对token”的注意力是必须的吗?前不久Google的新论文《Synthesizer: Rethinking Self-Attention in Transformer Models》对自注意力机制做了一些“异想天开”的探索,里边的结果也许会颠覆我们对自注意力的认知。
自注意力 #
自注意力模型的流行,始于2017年Google发表的《Attention is All You Need》一文,关于它的科普读者还可以参考笔者旧作《Attention is All You Need》浅读(简介+代码)。它的基础是Scaled-Dot Attention,定义如下:
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = softmax\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{d_k}}\right)\boldsymbol{V}\end{equation}
其中$\boldsymbol{Q}\in\mathbb{R}^{n\times d_k}, \boldsymbol{K}\in\mathbb{R}^{m\times d_k}, \boldsymbol{V}\in\mathbb{R}^{m\times d_v}$,softmax则是在$m$的那一维进行归一化。而自注意力,则是对于同一个$\boldsymbol{X}\in \mathbb{R}^{n\times d}$,通过不同的投影矩阵$\boldsymbol{W}_q,\boldsymbol{W}_k,\boldsymbol{W}_v\in\mathbb{R}^{d\times d'}$得到$\boldsymbol{Q}=\boldsymbol{X}\boldsymbol{W}_q,\boldsymbol{K}=\boldsymbol{X}\boldsymbol{W}_k,\boldsymbol{V}=\boldsymbol{X}\boldsymbol{W}_v$,然后再做Attention,即
\begin{equation}\begin{aligned}
SelfAttention(\boldsymbol{X}) =&\, Attention(\boldsymbol{X}\boldsymbol{W}_q, \boldsymbol{X}\boldsymbol{W}_k, \boldsymbol{X}\boldsymbol{W}_v)\\
=&\, softmax\left(\frac{\boldsymbol{X}\boldsymbol{W}_q \boldsymbol{W}_k^{\top}\boldsymbol{X}^{\top}}{\sqrt{d_k}}\right)\boldsymbol{X}\boldsymbol{W}_v&
\end{aligned}\end{equation}
至于Multi-Head Attention,则不过是Attention运算在不同的参数下重复多次然后将多个输出拼接起来,属于比较朴素的增强。而关于它的进一步推广,则可以参考《突破瓶颈,打造更强大的Transformer》。
天马行空 #
本质上来看,自注意力就是通过一个$n\times n$的矩阵$\boldsymbol{A}$和$d\times d'$的矩阵$\boldsymbol{W}_v$,将原本是$n\times d$的矩阵$\boldsymbol{X}$,变成了$n\times d'$的矩阵$\boldsymbol{A}\boldsymbol{X}\boldsymbol{W}_v$。其中矩阵$\boldsymbol{A}$是动态生成的,即
\begin{equation}\boldsymbol{A}=softmax\left(\boldsymbol{B}\right),\quad\boldsymbol{B}=\frac{\boldsymbol{X}\boldsymbol{W}_q \boldsymbol{W}_k^{\top}\boldsymbol{X}^{\top}}{\sqrt{d_k}}\end{equation}
对于矩阵$\boldsymbol{B}$,本质上来说它就是$\boldsymbol{X}$里边两两向量的内积组合,所以我们称它为“token对token”的Attention。
那么,就到了前面提出的问题:“token对token”是必须的吗?能不能通过其他方式来生成这个矩阵$\boldsymbol{B}$?Google的这篇论文正是“天马行空”了几种新的形式并做了实验,这些形式统称为Synthesizer。
Dense形式 #
第一种形式在原论文中称为Dense:$\boldsymbol{B}$需要是$n\times n$大小的,而$\boldsymbol{X}$是$n\times d$的,所以只需要一个$d\times n$的变换矩阵$\boldsymbol{W}_a$就可以将它变成$n\times n$了,即
\begin{equation}\boldsymbol{B}=\boldsymbol{X}\boldsymbol{W}_a\end{equation}
这其实就相当于把$\boldsymbol{K}$固定为常数矩阵$\boldsymbol{W}_a^{\top}$了。当然,原论文还做得更复杂一些,用到了两层Dense层:
\begin{equation}\boldsymbol{B}=\text{relu}\left(\boldsymbol{X}\boldsymbol{W}_1 + \boldsymbol{b}_1\right)\boldsymbol{W}_2 + \boldsymbol{b}_2\end{equation}
但思想上并没有什么变化。
Random形式 #
刚才说Dense形式相当于把$\boldsymbol{K}$固定为常数矩阵,我们还能不能更“异想天开”一些:把$\boldsymbol{Q}$固定为常数矩阵?这时候整个$\boldsymbol{B}$相当于是一个常数矩阵,即
\begin{equation}\boldsymbol{B}=\boldsymbol{R}\end{equation}
原论文中还真是实验了这种形式,称之为Random,顾名思义,就是$\boldsymbol{B}$是随机初始化的,然后可以选择随训练更新或不更新。据原论文描述,固定形式的Attention首次出现在论文《Fixed Encoder Self-Attention Patterns in Transformer-Based Machine Translation》,不同点是那里的Attention矩阵是由一个函数算出来的,而Google这篇论文则是完全随机初始化的。从形式上看,Random实际上就相当于可分离卷积(Depthwise Separable Convolution)运算。
低秩分解 #
上面两种新形式,往往会面对着参数过多的问题,所以很自然地就想到通过低秩分解来降低参数量。对于Dense和Random,原论文也提出并验证了对应的低秩分解形式,分别称为Factorized Dense和Factorized Random。
Factorized Dense通过Dense的方式,生成两个$n\times a, n\times b$的矩阵$\boldsymbol{B}_1,\boldsymbol{B}_2$,其中$ab=n$;然后将$\boldsymbol{B}_1$重复$b$次、然后将$\boldsymbol{B}_2$重复$a$次,得到对应的$n\times n$矩阵$\tilde{\boldsymbol{B}}_1,\tilde{\boldsymbol{B}}_2$,最后将它们逐位相乘(个人感觉相乘之前$\tilde{\boldsymbol{B}}_2$应该要转置一下比较合理,但原论文并没有提及),合成一个$n\times n$的矩阵:
\begin{equation}\boldsymbol{B}=\tilde{\boldsymbol{B}}_1 \otimes \tilde{\boldsymbol{B}}_2\end{equation}
至于Factorized Random就很好理解了,本来是一整个$n\times n$的矩阵$\boldsymbol{R}$,现在变成两个$n\times k$的矩阵$\boldsymbol{R}_1,\boldsymbol{R}_2$,然后
\begin{equation}\boldsymbol{B}=\boldsymbol{R}_1\boldsymbol{R}_2^{\top} \end{equation}
混合模式 #
到目前为止,连同标准的自注意力,我们有5种不同的生成矩阵$\boldsymbol{B}$的方案,它们也可以混合起来,即
\begin{equation}\boldsymbol{B}=\sum_{i=1}^N \alpha_i \boldsymbol{B}_i\end{equation}
其中$\boldsymbol{B}_i$是不同形式的自注意力矩阵,而$\sum\limits_{i=1}^N \alpha_i=1$是可学习参数。
结果分析 #
前面介绍了统称为Synthesizer的几种新型自注意力形式,它们的共同特点是没有保持“token对token”形式,尤其是Random,则完全抛弃了原有注意力的动态特点,变成了静态的矩阵。
那么,这些新型自注意力的效果如何呢?它们又怎样冲击我们对自注意力机制的认识呢?
机器翻译 #
第一个评测任务是机器翻译,详细地比较了各种自注意力形式的效果:
不知道读者怎么想,反正Synthesizer的这些结果是冲击了笔者对自注意力的认知的。表格显示,除了固定的Random外,所有的自注意力形式表现基本上都差不多,而且就算是固定的Random也有看得过去的效果,这表明我们以往对自注意力的认知和解释都太过片面了,并没有揭示自注意力生效的真正原因。
摘要对话 #
接下来在摘要和对话生成任务上的结果:
在自动摘要这个任务上,标准注意力效果比较好,但是对话生成这个任务上,结果则反过来:标准的自注意力是最差的,Dense(D)和Random(R)是最好的,而当Dense和Random混合了标准的自注意力后(即 D+V 和 R+V),效果也变差了。这说明标准注意力并没有什么“独占鳌头”的优势,而几个Synthesizer看起来是标准注意力的“退化”,但事实上它们互不从属,各有优势。
预训练+微调 #
最后,对于我们这些普通读者来说,可能比较关心是“预训练+微调”的效果怎样,也就是说,将BERT之类的模型的自注意力替换之后表现如何?原论文确实也做了这个实验,不过Baseline不是BERT而是T5,结果如下:
在这个结果中,相比标准自注意力,Dense和Random就显得逊色了,这表明Dense和Random也许会在单一任务上表现得比较好,而迁移能力则比较弱。但是不能否定的是,像Random这样的自注意力,由于直接省去了$\boldsymbol{Q}\boldsymbol{K}^{\top}$这个矩阵运算,因此计算效率会有明显提升,因此如果能想法子解决这个迁移性问题,说不准Transformer模型家族将会迎来大换血。
文末小结 #
本文介绍了Google的新工作Synthesizer,它是对目前流行的自注意力机制的反思和探索。论文中提出了几种新型的自注意力机制,并做了相当充分的实验,而实验结果很可能会冲击我们对自注意力机制的已有认知,值得大家读读~
转载到请包括本文地址:https://spaces.ac.cn/archives/7430
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (May. 25, 2020). 《Google新作Synthesizer:我们还不够了解自注意力 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/7430
@online{kexuefm-7430,
title={Google新作Synthesizer:我们还不够了解自注意力},
author={苏剑林},
year={2020},
month={May},
url={\url{https://spaces.ac.cn/archives/7430}},
}
May 26th, 2020
但是這樣就無法可視化每個token 的權重了,對吧?
May 26th, 2020
刚去查了一下Synthesizer的意思是音响合成器,百科解释为:电子音乐合成器又简称电子合成器,是由电子设备代替乐队进行演奏和进行自动化编曲的一种电子化设备。用合成器制作声音的方法很多,起先是把若干个正弦波振荡器连在一起,改变各自的频率、振幅,就可以产生不同音色。 这里对att内部的改造,确实有点像 改变各自的频率、振幅,就可以产生不同音色的一个过程哈哈
May 26th, 2020
多捞哦
May 27th, 2020
你好苏神,看了你的博客之后,我又去看了看原论文,我有几点疑惑想请教您一下:
1. 针对 Factorized Dense Synthesizer,需要保证 l = a * b 这个条件,但是如果输入的句子长度是素数的话,这个条件就不成立了,就不能使用Factorized,但是论文里面没有对这种情况进行分析并给出解决方案,我不清楚是不是真的存在这种问题,如果存在的话,怎么解决呢(没开代码,也不清楚google是怎么做的
2. 无论是 Dense 还是 Random 的 Synthesizer,都需要构建一个参数矩阵,但是这个参数矩阵都不可避免的和输入的句子的长度进行关联,比如,Dense的参数矩阵式一个两层的MLP,但是输出的神经元的数目是句子的长度,但是不同的样本具有不同的句子长度;Random的参数矩阵也是一个l * k的矩阵,同样和句子的长度进行关联了,看不到代码也不清楚google处理这一个问题的
非常感谢你的分享,希望可以得到你的回复
这是个好问题,我写文章的时候,也觉得应该会有人提这个问题。但正如你所说的,论文没有对这里做更细致的描述,也没有开源代码,所以你要问我我也不清楚。
至于要我猜的话,我感觉应该就像是BERT的绝对位置编码一样吧,设置一个最大长度的attention矩阵,比如$512\times 512$的,然后根据句子长度切片成$n\times n$。
July 17th, 2020
感谢您的分享,这里对低秩分解部分有个疑惑,为什么对Dense的分解需要ab=n呢?
其实我也不理解...但是原论文是这样设计的。
B1的size为n*a,B1重复b次,得到B1",其size为b*1。由于ab=n,可B1*(B1")=n*a*b=n*n。不知道是不是为了凑得n*n的size而设定的?
是这样说,但是没有转置总感觉是不充分的。
猜测如果$a$、$b$互质的话,$\boldsymbol{B}$就可以理解为$\boldsymbol{B}_1$和$\boldsymbol{B}_2$中列向量的笛卡尔积。
如果是另一种解释,$\boldsymbol{B}_2$应在相乘之前转置的话,$ab=n$的要求就过于苛刻了。
August 9th, 2020
感谢分享。
但是自注意力模型里Q、K、V的维度似乎有问题
再看了一下,没看出什么问题,请问你说的是哪里?
November 6th, 2020
比黑8还黑
May 25th, 2021
综述的很好,感谢分享~
September 30th, 2021
Random 形式为什么相当于可分离卷积运算呢?苏神能否展开讲讲,谢谢啦!
自己查一下可分离卷积的运算~
October 6th, 2021
[...]https://spaces.ac.cn/archives/7430[...]