淡白口蘑

淡白口蘑

达尔文的进化学说告诉我们,自然界总是在众多的生物中挑出最能够适应环境的物种,赋予它们更高的生存几率,久而久之,这些物种经过亿万年的“优胜劣汰”,进化成了今天的千奇百怪的生物。无疑,经过长期的选择,优良的形状会被累积下来,换句话讲,这些物种在某些环境适应能力方面已经达到最优或近乎最优的状态(又是一个极值问题了)。好,现在我们来考虑蘑菇。

蘑菇是一种真菌生物,一般生长在阴暗潮湿的环境中。喜欢湿润的它自然也不希望散失掉过多的水分,因此,它努力地调整自身的形状,使它的“失水”尽可能地少。假设单位面积的蘑菇的失水速度是一致的,那么问题就变成了使一个给定体积的立体表面积尽可能少的问题了。并且考虑到水平各向同性生长的问题,理想的蘑菇形状应该就是一个平面图形的旋转体。那么这个旋转体是什么呢?聪明的你是否想到了是一个球体(的一部分)呢?

不过很遗憾,答案并非球体。我们来分析下这个问题,即哪种曲线的旋转体表面积最小,该曲线过(x1,y1)(x2,y2)

旋转体曲线

旋转体曲线

若已知曲线y=f(x)是满足条件的曲线,由于两个底面都是已知面积的圆,我们只需要考虑侧面积。旋转体的侧面积计算公式为:
S=x2x12πxdx2+dy2=2πx2x1x1+˙y2dx

这里˙y=dydx。上述式子的意思就是将立体无限分割,将每一部分的立体当成一个圆台,用圆台的侧面积近似代替,并累积。

至此,问题变成了求一个函数y=f(x)使得积分S=2πx2x1x1+˙y2dx取极值。根据欧拉-拉格朗日方程,应该有
ddx((x1+˙y2)˙y)=(x1+˙y2)y=0

所以有(x1+˙y2)˙y=x˙y1+˙y2=C1,C1是积分常数。继而能够推出
˙y=C11x2C21

这时候,只要两边积分就可以得到:y=C1ln|x+x2C21|+C2。或者利用双曲函数改写成
x=C1cosh(yC2C1)

可见,这并不是一个圆。这是一个怎样的形状呢?如果设C1=2,C2=0,则利用几何画板可以画出

蘑菇的最优曲线

蘑菇的最优曲线

显然,该形状还是比较接近的。另一方面,双曲函数包含着自然对数的底e这个神奇的常数,也就是说,e本来源于自然,也充分体现着自然!这是一个多么和谐的世界!

转载到请包括本文地址:https://spaces.ac.cn/archives/1339

更详细的转载事宜请参考:《科学空间FAQ》

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (Apr. 30, 2011). 《蘑菇的最优形状模型 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/1339

@online{kexuefm-1339,
        title={蘑菇的最优形状模型},
        author={苏剑林},
        year={2011},
        month={Apr},
        url={\url{https://spaces.ac.cn/archives/1339}},
}