24 Dec

RealFormer:把残差转移到Attention矩阵上面去

大家知道Layer Normalization是Transformer模型的重要组成之一,它的用法有PostLN和PreLN两种,论文《On Layer Normalization in the Transformer Architecture》中有对两者比较详细的分析。简单来说,就是PreLN对梯度下降更加友好,收敛更快,对训练时的超参数如学习率等更加鲁棒等,反正一切都好但就有一点硬伤:PreLN的性能似乎总略差于PostLN。最近Google的一篇论文《RealFormer: Transformer Likes Residual Attention》提出了RealFormer设计,成功地弥补了这个Gap,使得模型拥有PreLN一样的优化友好性,并且效果比PostLN还好,可谓“鱼与熊掌兼得”了。

PostLN、PreLN和RealFormer结构示意图

PostLN、PreLN和RealFormer结构示意图

点击阅读全文...

4 Dec

层次分解位置编码,让BERT可以处理超长文本

大家都知道,目前的主流的BERT模型最多能处理512个token的文本。导致这一瓶颈的根本原因是BERT使用了从随机初始化训练出来的绝对位置编码,一般的最大位置设为了512,因此顶多只能处理512个token,多出来的部分就没有位置编码可用了。当然,还有一个重要的原因是Attention的$\mathscr{O}(n^2)$复杂度,导致长序列时显存用量大大增加,一般显卡也finetune不了。

位置编码的层次分解示意图

位置编码的层次分解示意图

本文主要面向前一个原因,即假设有足够多的显存前提下,如何简单修改当前最大长度为512的BERT模型,使得它可以直接处理更长的文本,主要思路是层次分解已经训练好的绝对位置编码,使得它可以延拓到更长的位置。

点击阅读全文...

1 Dec

Performer:用随机投影将Attention的复杂度线性化

Attention机制的$\mathscr{O}(n^2)$复杂度是一个老大难问题了,改变这一复杂度的思路主要有两种:一是走稀疏化的思路,比如我们以往介绍过的Sparse Attention以及Google前几个月搞出来的Big Bird,等等;二是走线性化的思路,这部分工作我们之前总结在《线性Attention的探索:Attention必须有个Softmax吗?》中,读者可以翻看一下。本文则介绍一项新的改进工作Performer,出自Google的文章《Rethinking Attention with Performers》,它的目标相当霸气:通过随机投影,在不损失精度的情况下,将Attention的复杂度线性化。

各个Transformer模型的“效果-速度-显存”图,纵轴是效果,横轴是速度,圆圈的大小代表所需要的显存。理论上来说,越靠近右上方的模型越好,圆圈越小的模型越好

各个Transformer模型的“效果-速度-显存”图,纵轴是效果,横轴是速度,圆圈的大小代表所需要的显存。理论上来说,越靠近右上方的模型越好,圆圈越小的模型越好

说直接点,就是理想情况下我们可以不用重新训练模型,输出结果也不会有明显变化,但是复杂度降到了$\mathscr{O}(n)$!看起来真的是“天上掉馅饼”般的改进了,真的有这么美好吗?

点击阅读全文...

20 Nov

跟风玩玩目前最大的中文GPT2模型(bert4keras)

相信不少读者这几天都看到了清华大学与智源人工智能研究院一起搞的“清源计划”(相关链接《中文版GPT-3来了?智源研究院发布清源 CPM —— 以中文为核心的大规模预训练模型》),里边开源了目前最大的中文GPT2模型CPM-LM(26亿参数),据说未来还会开源200亿甚至1000亿参数的模型,要打造“中文界的GPT3”。

官方给出的CPM-LM的Few Shot效果演示图

官方给出的CPM-LM的Few Shot效果演示图

我们知道,GPT3不需要finetune就可以实现Few Shot,而目前CPM-LM的演示例子中,Few Shot的效果也是相当不错的,让人跃跃欲试,笔者也不例外。既然要尝试,肯定要将它适配到自己的bert4keras中才顺手,于是适配工作便开始了。本以为这是一件很轻松的事情,谁知道踩坑踩了快3天才把它搞好,在此把踩坑与测试的过程稍微记录一下。

点击阅读全文...

11 Nov

中国象棋

中国象棋

不知道读者有没有看过量子位年初的文章《最强写作AI竟然学会象棋和作曲,语言模型跨界操作引热议,在线求战》,里边提到有网友用GPT2模型训练了一个下国际象棋的模型。笔者一直在想,这么有趣的事情怎么可以没有中文版呢?对于国际象棋来说,其中文版自然就是中国象棋了,于是我一直有想着把它的结果在中国象棋上面复现一下。拖了大半年,在最近几天终于把这个事情完成了,在此跟大家分享一下。

象棋谱式
将军不离九宫内,士止相随不出官。
象飞四方营四角,马行一步一尖冲。
炮须隔子打一子,车行直路任西东。
唯卒只能行一步,过河横进退无踪。

点击阅读全文...

6 Nov

那个屠榜的T5模型,现在可以在中文上玩玩了

不知道大家对Google去年的屠榜之作T5还有没有印象?就是那个打着“万事皆可Seq2Seq”的旗号、最大搞了110亿参数、一举刷新了GLUE、SuperGLUE等多个NLP榜单的模型,而且过去一年了,T5仍然是SuperGLUE榜单上的第一,目前还稳妥地拉开着第二名2%的差距。然而,对于中文界的朋友来说,T5可能没有什么存在感,原因很简单:没有中文版T5可用。不过这个现状要改变了,因为Google最近放出了多国语言版的T5(mT5),里边当然是包含了中文语言。虽然不是纯正的中文版,但也能凑合着用一下。

“万事皆可Seq2Seq”的T5

“万事皆可Seq2Seq”的T5

本文将会对T5模型做一个简单的回顾与介绍,然后再介绍一下如何在bert4keras中调用mT5模型来做中文任务。作为一个原生的Seq2Seq预训练模型,mT5在文本生成任务上的表现还是相当不错的,非常值得一试。

点击阅读全文...

29 Oct

用ALBERT和ELECTRA之前,请确认你真的了解它们

在预训练语言模型中,ALBERT和ELECTRA算是继BERT之后的两个“后起之秀”。它们从不同的角度入手对BERT进行了改进,最终提升了效果(至少在不少公开评测数据集上是这样),因此也赢得了一定的口碑。但在平时的交流学习中,笔者发现不少朋友对这两个模型存在一些误解,以至于在使用过程中浪费了不必要的时间。在此,笔者试图对这两个模型的一些关键之处做下总结,供大家参考,希望大家能在使用这两个模型的时候少走一些弯路。

ALBERT与ELECTRA

ALBERT与ELECTRA

(注:本文中的“BERT”一词既指开始发布的BERT模型,也指后来的改进版RoBERTa,我们可以将BERT理解为没充分训练的RoBERTa,将RoBERTa理解为更充分训练的BERT。本文主要指的是它跟ALBERT和ELECTRA的对比,因此不区分BERT和RoBERTa。)

点击阅读全文...

18 Sep

提速不掉点:基于词颗粒度的中文WoBERT

当前,大部分中文预训练模型都是以字为基本单位的,也就是说中文语句会被拆分为一个个字。中文也有一些多颗粒度的语言模型,比如创新工场的ZEN和字节跳动的AMBERT,但这类模型的基本单位还是字,只不过想办法融合了词信息。目前以词为单位的中文预训练模型很少,据笔者所了解到就只有腾讯UER开源了一个以词为颗粒度的BERT模型,但实测效果并不好。

那么,纯粹以词为单位的中文预训练模型效果究竟如何呢?有没有它的存在价值呢?最近,我们预训练并开源了以词为单位的中文BERT模型,称之为WoBERT(Word-based BERT,我的BERT!),实验显示基于词的WoBERT在不少任务上有它独特的优势,比如速度明显的提升,同时效果基本不降甚至也有提升。在此对我们的工作做一个总结。

点击阅读全文...