天体力学巨匠——拉普拉斯
By 苏剑林 | 2012-11-16 | 45773位读者 | 引用本文其实好几个月前就已经写好了,讲的是我最感兴趣的天体力学领域的故事,已经发表在2012年11月的《天文爱好者》上。
作为一本天文科普杂志,《天文爱好者》着眼于普及天文,内容偏向于有趣的天体物理等,比较少涉及到天体力学。事实上,在天文发展史中,天体力学——研究天体纯粹在万有引力作用下演化的科学——占据了相当重要的地位。过去,天文就被划分为天体力学、天体物理以及天体测量学三个大块。只是在近现代,由于电子计算机的飞速发展,天体力学的多数问题都交给了计算机数值计算解决,因此这一领域逐渐淡出了人们视野。不过,回味当初那段天体力学史,依然让我们觉得激动人心。
首先引入“天体力学(Celestial mechanics)”这一术语的是法国著名数学家、天文巨匠拉普拉斯。他的全名为皮埃尔?西蒙?拉普拉斯(Pierre?Simon marquis de Laplace),因研究太阳系稳定性的动力学问题被誉为法国的牛顿和天体力学之父。他和生活在同一时代的法国著名数学家拉格朗日以及勒让德(Adrien-Marie Legendre)并称为“三L”。
神秘的少年时期
由于1925年的一场大火,很多拉普拉斯的生活细节资料都丢失了。根据W. W. Rouse Ball的说法,他可能是一个普通农民或农场工人的儿子,1749年3月23日出生于诺曼底卡尔瓦多斯省的伯蒙特恩奥格。少年时期,拉普拉斯凭借着自己的才能和热情,在富人邻居的帮助下完成了学业。他父亲希望这能使他将来以宗教为业,16岁时,他被送往卡昂大学读神学。但他很快在数学上显露头角。
混沌的世界——“星之轨迹”的研究
By 苏剑林 | 2012-01-13 | 38649位读者 | 引用(本文已被刊登在2012年1月的《天文爱好者》上,于笔者而言这是一份很棒的新年礼物!)
在去年第七期《天爱》上,我们看到了N体问题所呈现出来的一些对称、漂亮的周期轨道,这体现了N体问题和谐有序的一面。但是这仅仅是N体问题的冰山一角,笔者也提到过N体问题的本质是混沌、无序的,通俗来讲就是非常乱,无法用数学方程来精确描述。这看起来是一种不完美。但试想,探索当初伽利略将望远镜对准月球后,看到的是如想象中光滑的月面,那么他还会惊叹宇宙的神奇吗?
本文就让我们来更深入地了解一下N体问题的研究历史。
观测&拟合时代
由于人类的自我优越感以及日月星辰东升西落的经验,让我们长期都认为地球是宇宙的中心。第一个比较系统提出地心说的人当属天文学家欧多克斯(Eudoxus,死于公元前347年左右),但他的地心说是非常粗糙的,以至于无法解释很多基本现象,如无法准确预言日食和解释行星逆行等。但亚里士多德接受了地心说,并且由于他在政治和科学上的权威,使地心说免去了夭折的命运。后来托勒密通过他的本轮,完善了地心说,使之延续到了16世纪。
看完了“双不动中心”问题,我们不妨再来看一个貌似简单一点的力学问题,在一个固定质点的引力吸引的基础上,增加一个恒力作用,研究这样的力场中小天体的运动。
咋看上去这个问题比“双不动中心”简单多了,至少运动方程也显得更简单:
$$\ddot{vec{r}}=-GM\frac{\vec{r}}{|\vec{r}|^3}+\vec{F}$$
其中$\vec{F}$是一个常向量。不过让人比较意外的是,这个问题本质上和“双不动中心”是一样的,它可以看作是双不动中心问题的一个极限情况。而且它们的解法也是惊人地相似,下面我们就来分析这一个过程。
首先很容易写出这个方程的能量守恒积分:
$$1/2 \dot{vec{r}}^2-GM\frac{1}{|\vec{r}|}-\vec{F}\cdot \vec{r}=h$$
我们在研究地球附近的小天体运动时,如果把天体和地球看作一个二体系统,那最多只能算上一个零级近似,如果使用“地球+月球+小天体”组成的圆形限制性三体问题模型,那可以算上一个二级近似了。那么,一级近似又是什么了。BoJone认为,它就是本文将要讲的“双固定引力中心问题”了,也叫“双不动中心问题”,英文名是two fixed-center problem。这是一种特殊的限制性三体问题。在这个三体系统中,两个主天体(或称有限质量天体)固定不动,第三个小天体在两个固定的主天体吸引下运动。欧拉、拉格朗日、勒让德、雅可比等人很早就研究过这个问题。其中,欧拉最先成功地求出了这个系统的积分。[引用]
另外,双固定引力中心问题还有另外一个应用,在研究人造卫星的运动时,可以只考虑地球引力,但是由于地球不是完美的球体,把其看成一个质点其实不十分精确,要是把它拆分为两个引力源,就可以很大程度上提高精确度。毕竟双固定引力中心问题是完全可以积分的,可以作为一个比较好的中间轨道(介乎圆锥曲线和精确轨道之间的)。
《方程与宇宙》:一种有趣的三体问题坐标
By 苏剑林 | 2011-02-19 | 22967位读者 | 引用通常来说,选取惯性系为参考系,列出的三体问题方程为
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}$$
历史上出现过很多不同形式的变换,使得三体问题的运动方程有了各样的形式,如Lagrange形式、Jacobi形式、Hamilton形式等。这些变换形式都各有特点,都能够在一定程度上化简三体问题。BoJone在研究摆弄等质量型三体问题的运动方程时,也发现了一种很有趣的变换,在此贴出与大家分享。
设$\vec{R}_1=\vec{r}_1-\vec{r}_2,\vec{R}_2=\vec{r}_2-\vec{r}_3,\vec{R}_3=\vec{r}_3-\vec{r}_1$,则三体问题的运动方程变为
《方程与宇宙》:限制性三体的那些事儿(八)
By 苏剑林 | 2011-02-04 | 26829位读者 | 引用在上一些关于限制性三体问题的探讨中,我们得出了在平面上的方程:
$$\ddot{R}+2i\omega \dot{R}=\omega^2 R-GM\frac{R-l_1}{|R-l_1|^3}-Gm\frac{R-l_2}{|R-l_2|^3}\tag{32}$$
能量积分为:
$$\frac{1}{2}|\dot{R}|^2=\frac{1}{2} \omega^2 |R|^2+\frac{GM}{|R-l_1|}+\frac{Gm}{|R-l_2|}-C\tag{33}$$
下面就以这两个方程为基础,再说说限制性三体问题的那些事儿...
[春礼]《方程与宇宙》:圆形限制性三体问题(七)
By 苏剑林 | 2011-02-04 | 23828位读者 | 引用平面圆形限制性三体问题运动方程及能量积分
plane circular restricted three-body problem
02.04有重要修正!!
寒假一个很大的目标就是能够在三体问题的周期轨道上有点突破,于是就出动了“向量”、“复分析”、“微分方程”等理论“核武”,遗憾的是,“有心栽花花不开”,到今天还是没有多少进展。不过俗语也说“无心插柳柳成荫”,也不错。今天回看《天体力学引论》中的“圆形限制性三体问题”,经过一番思考,利用这些天的思考方法重新推导出了其运动方程和能量积分,也算是“意外收获”在此作为春节礼物与大家分享。
所谓“圆形限制性三体问题”,就是指两个大质量天体(质点)在它们相互引力作用下做圆周运动,假设第三天体(质量趋于0)只受到这两个天体的引力作用而不影响两个天体运行的一种运动情况。由于普通三体问题无法积分,而这个“限制性模型”能够把问题化简不少(不过还是不能积分出来的),因此也得到了一定应用。它的应用条件是:第三体质量小(如当前航天器与地球、太阳)、短程。注意短程也是相当重要的条件之一,注意短程也是相当重要的条件之一,质量越小应用范围越大。要是质量大的话,就不能计算太长的路程。
最近评论