《自然极值》系列——6.最速降线的解答
By 苏剑林 | 2010-12-10 | 61994位读者 | 引用通过上一小节的小故事,我们已经能够基本了解最速降线的内容了,它就是要我们求出满足某一极值条件的一个未知函数,由于函数是未知的,因此这类问题被称为“泛分析”。其中还谈到,伯努利利用费马原理巧妙地得出了答案,那么我们现在就再次回顾历史,追寻伯努利的答案,并且寻找进一步的应用。
为了计算方便,我们把最速降线倒过来,把初始点设置在原点。在下落过程中,重力势能转化为动能,因此,在点(x,y)处有$\frac{1}{2} mv^2=mgy\Rightarrow v=\sqrt{2gy}$,由于纯粹为了探讨曲线形状,所以我们使g=0.5,即$v=\sqrt{y}$。在点(x,y)处所走的路程为$ds=\sqrt{dy^2+dx^2}=\sqrt{\dot{y}^2+1}dx$,所以时间为$dt=\frac{ds}{v}=\frac{\sqrt{\dot{y}^2+1}dx}{\sqrt{y}}$,于是最速降线问题就是求使$t=\int_0^{x_2} \frac{\sqrt{\dot{y}^2+1}dx}{\sqrt{y}}$最小的函数。
《自然极值》系列——8.极值分析
By 苏剑林 | 2010-12-26 | 45878位读者 | 引用本篇文章是《自然极值》系列最后一篇文章,估计也是2010年最后一篇文章了。在这个美好的2010年,想必大家一定收获匪浅,BoJone也在2010年成长了很多。在2010年的尾声,BoJone和科学空间都祝大家在新的一年里更加开心快乐,在科学的道路上更快速地前行。
在本文,BoJone将与大家讨论求极值的最基本原理。这一探讨思路受到了天才的费恩曼所著《费恩曼物理讲义》的启迪。我们分别对函数求极值(求导)和泛函数极值(变分)进行一些简略的分析。
一、函数求极值
对于一个函数$y=f(x)$,设想它在$x=x_0$处取到最大值,那么显然对于很小的增量$\Delta x$,有
$$f(x_0+\Delta x) \leq f(x_0)\tag{3}$$根据泰勒级数,我们有
$f(x_0+\Delta x)=f(x_0)+f'(x_0)\Delta x$————(4)
[遐想]细胞的进化是一次次“大吞并”?
By 苏剑林 | 2011-11-06 | 42187位读者 | 引用传说中的高三备考是一次全面系统的大复习,但对于我们而言,它并不是复习,而是学习。我发现很多知识点在以前都是鲜有接触的,这无疑说明了两个问题:当时我学习得很肤浅;我的遗忘力太强了。就拿生物来说吧,以前总是很简单地就跳阅过去了,从不会去思考一些深入的问题。现在的重新“复习”阶段,却饶有兴趣地引出了很多的思考。特别是有关细胞进化的讨论,显得特别有趣。
根据古生物的研究,地球上第一个生命起源于32亿年前,是一个很简单的原核细胞,其遗传物质是RNA,后来逐渐演变成以DNA为遗传物质,例如细菌有一个环状的DNA分子。原核生物很快就进化出了真核生物,因为迄今所知最古老的真核生物化石已有近21亿年的历史,许多科学家推测,最早的真核生物可能早在30亿年前就出现了。
这里便引申出了一个问题:病毒是什么时候出现的?它是怎么出现的?
不可能事件——一道经典电磁感应题的错误
By 苏剑林 | 2011-01-09 | 42417位读者 | 引用《方程与宇宙》:三体问题和它的初积分(六)
By 苏剑林 | 2011-01-20 | 62368位读者 | 引用The Three Body Problem and its Classical Integration
很多天文爱好者都已经接触到了“二体问题”(我们在高中学习到的“开普勒三定律”就是内容之一),由于在太阳系中行星质量相对较小而且距离相对较远,应用“二体问题”的解对天体进行计算、预报等能够满足一定的近似需求。不过,如果需要更高精度的计算,就不能把其他行星的引力给忽略掉了,于是就产生了所谓N体问题(N-Body Problem),即N个质点尽在它们各自引力的相互作用下的运动规律问题。最简单的二体已经被彻底解决,而三体或更多体的问题则与二体大相径庭,因为庞加莱证明了,三体问题不能严格求解,而且这是一个混沌系统,任何微小的扰动都会造成不可预期的效果。
根据牛顿力学,选择惯性参考系,设三个质点分别为$M_1,M_2,M_3$,向径分别为$\vec{r_1},\vec{r_2},\vec{r_3}$,可以列出运动方程(以下的导数都默认是对时间t求导)
[春礼]《方程与宇宙》:圆形限制性三体问题(七)
By 苏剑林 | 2011-02-04 | 23884位读者 | 引用平面圆形限制性三体问题运动方程及能量积分
plane circular restricted three-body problem
02.04有重要修正!!
寒假一个很大的目标就是能够在三体问题的周期轨道上有点突破,于是就出动了“向量”、“复分析”、“微分方程”等理论“核武”,遗憾的是,“有心栽花花不开”,到今天还是没有多少进展。不过俗语也说“无心插柳柳成荫”,也不错。今天回看《天体力学引论》中的“圆形限制性三体问题”,经过一番思考,利用这些天的思考方法重新推导出了其运动方程和能量积分,也算是“意外收获”在此作为春节礼物与大家分享。
所谓“圆形限制性三体问题”,就是指两个大质量天体(质点)在它们相互引力作用下做圆周运动,假设第三天体(质量趋于0)只受到这两个天体的引力作用而不影响两个天体运行的一种运动情况。由于普通三体问题无法积分,而这个“限制性模型”能够把问题化简不少(不过还是不能积分出来的),因此也得到了一定应用。它的应用条件是:第三体质量小(如当前航天器与地球、太阳)、短程。注意短程也是相当重要的条件之一,注意短程也是相当重要的条件之一,质量越小应用范围越大。要是质量大的话,就不能计算太长的路程。
[SETI-50周年]送给外星人的礼物
By 苏剑林 | 2011-02-06 | 35028位读者 | 引用转载自2011年1月的《天文爱好者》 作者:钟晚晴
生命出现是天体演化的必然结果
15世纪时,欧洲的文艺复兴运动引起了人们宇宙观的大革命。哥白尼学说的主要传播者之一,意大利思想家布魯诺毫不含糊地宣扬日心说并且提及“外星人”是否存在问题,他这样写到:“宇宙中存在着无数的太阳,存在着无数绕自己太阳运转的地球,就像我们的七个行星绕着我们的太陌运转似的……。在这些世界上居住着各种生物。”科学大师伽利略率先把望远镜指向星空,继而几百年以来有了一系列天文发现。太空视野的大幵阔常引发人类这样的追问:除了地球之外,茫茫宇宙中还存在别的文明星球吗?如果存在,能否找到人类的知音一智慧生命?
科学家通过研究地球化石发现,早在35亿年前地球上就已有了一种发育得比较高级的单细胞生物,即蓝藻类;根据恒星演化理论以及对地球上古老岩石和陨星物质分析知道,太阳和地球的形成比这种生物的出现至少还要早约十几亿年左右。太阳系自原始星云形成后大约经过50亿年地球上才有人类。此外,科学考察表明,在最近五亿年来(根据化石考查)已经有过五次生命大灭绝,人类是五亿年来最后一次灭绝以后从猿进化而来。天体的环境变化往往决定着许许多多生命的命运,例如6500万年前恐龙的绝灭,据说就是遭遇了寒冷的冰期或地球被一颗直径十几千米的小天体撞击的结果。
从20世纪初以来,天文学的研究成果是显著的,例如关于银河系的许多发现,河外星系及宇宙膨胀的发现,特别是后来发现类星体、星际分子、脉冲星、河外星系超新星爆发等等。在进入空间科学和电子计算机科学时代以来,人们对宇宙天体的研究更加深入,每年都有许多新的天体被发现、探究。
施密特系统的校正镜方程求解
By 苏剑林 | 2011-02-11 | 32037位读者 | 引用非抛物面望远镜的校正镜方程求解
The Corrector Plate of Non-parabola Telescope
本文在牧夫天文论坛的讨论:
http://www.astronomy.ac/bbs/thread-160257-1-1.html
为了克服折射望远镜的色差问题,1670年,牛顿制造了第一台实用的反射式望远镜,将望远镜的主镜由玻璃透镜换成了抛物反射面,从而消除了色差。然而,相比球面镜,大口径的抛物面并不容易磨制。因为制作大球面镜只需要将曲率相等的小镜片相对自由组合在一起就行了,而抛物线每点的曲率并不相等,所以需要逐个磨制曲率不等的小镜片,并按照严格的顺序组合起来。这无疑大大增加了磨制难度。
为了解决这一难题,天文学家们想到了一个折衷的办法:以球面为主镜,并配以校正镜来校正球差。迎着这一思路,施密特望远镜随之而生。而当代的大望远镜基本上都是沿用这一思路。然而,校正镜是一个比抛物面更加复杂的四次曲面,磨制工艺要求更高,因此,校正镜也不宜过大。
最近评论