5 Sep

进驻中山大学南校区,折腾校园网

开始研究僧之旅,希望有一天能企及扫地僧的境界。

进入中山大学后,各种郁闷的事情就来了。首先最郁闷的就是开学时间特早,8月26日开学,感觉至少比一般学校早了一星期,开学这么早有意思么~~接着就是感觉中大的管理制度各种混乱,比我本科的华师差多了。好吧,这些琐事先不吐槽,接下来弄校园网,这是作死的开始。

我们是在南校区的,校园网是通过锐捷客户端来认证的,而我是用macbook的,不过中大这边还很人性化地提供了Mac版的锐捷,体积就1M左右,挺好的。但众所周知,macbook并没有有线网卡,每次我上网都得插着个USB网卡然后连着网线,这该有多郁闷。于是想办法通过路由器拨号。我也不算没经验的了,对openwrt这个系统有过一定研究,以前在本科的时候也是锐捷,可以用mentohust替代拨号,很简单。于是我在这里重复这样的过程,发现一直认证失败,按照网上提示的各种方法,都无法解决。

经过研究,我发现在Windows下,这里就只能用官方提供了锐捷4.90版本,从其他地方下载的更高级或者更低级的锐捷,都无法通过验证。估计就是因为这个机制,导致了mentohust难以通过验证。而且网上流行的mentohust都是基于V2协议的,但4.90是基于V4的。后来我又去下载了V4版本的进行交叉编译,测试发现还不成功。几近绝望的时候,我发现了mentohust-proxy,一个mentohust的改进版,让我找到了希望。(怎么找到它?我是直接到github搜索了,因为实在没辙了~~)

原理很简单,如果直接通过mentohust无法完成认证,那么就通过代理模式,由电脑来完成认证,而mentohust只需要负责发送心跳包维持联网就行。这是个很折中的方案,但应该说是一个很通用的方案,因为它的成功与否,基本就取决于自己电脑的锐捷客户端而已。看到这个方案,我就知道有戏了,于是赶紧补习了一下交叉编译的知识,最后成功编译好了,并且在路由上成功地完成了认证。

点击阅读全文...

6 Sep

基于双向LSTM和迁移学习的seq2seq核心实体识别

暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下。模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值。

比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别。这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起。如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的思路(如TF-IDF抽取)是行不通的,因为单句中的核心实体可能就只出现一次,这时候统计估计是不可靠的,最好能够从语义的角度来理解。我一开始就是从“核心识别”入手,使用的方法类似QA系统:

1、将句子分词,然后用Word2Vec训练词向量;

2、用卷积神经网络(在这种抽取式问题上,CNN效果往往比RNN要好)卷积一下,得到一个与词向量维度一样的输出;

3、损失函数就是输出向量跟训练样本的核心词向量的cos值。

点击阅读全文...

12 Sep

【中文分词系列】 5. 基于语言模型的无监督分词

迄今为止,前四篇文章已经介绍了分词的若干思路,其中有基于最大概率的查词典方法、基于HMM或LSTM的字标注方法等。这些都是已有的研究方法了,笔者所做的就只是总结工作而已。查词典方法和字标注各有各的好处,我一直在想,能不能给出一种只需要大规模语料来训练的无监督分词模型呢?也就是说,怎么切分,应该是由语料来决定的,跟语言本身没关系。说白了,只要足够多语料,就可以告诉我们怎么分词。

看上去很完美,可是怎么做到呢?《2.基于切分的新词发现》中提供了一种思路,但是不够彻底。那里居于切分的新词发现方法确实可以看成一种无监督分词思路,它就是用一个简单的凝固度来判断某处该不该切分。但从分词的角度来看,这样的分词系统未免太过粗糙了。因此,我一直想着怎么提高这个精度,前期得到了一些有意义的结果,但都没有得到一个完整的理论。而最近正好把这个思路补全了。因为没有查找到类似的工作,所以这算是笔者在分词方面的一点原创工作了。

语言模型

首先简单谈一下语言模型。

点击阅读全文...

19 Oct

【理解黎曼几何】6. 曲率的计数与计算(Python)

曲率的独立分量

黎曼曲率张量是一个非常重要的张量,当且仅当它全部分量为0时,空间才是平直的。它也出现在爱因斯坦的场方程中。总而言之,只要涉及到黎曼几何,黎曼曲率张量就必然是核心内容。

已经看到,黎曼曲率张量有4个指标,这也意味着它有$n^4$个分量,$n$是空间的维数。那么在2、3、4维空间中,它就有16、81、256个分量了,可见,要计算它,是一件相当痛苦的事情。幸好,这个张量有很多的对称性质,使得独立分量的数目大大减少,我们来分析这一点。

首先我们来导出黎曼曲率张量的一些对称性质,这部分内容是跟经典教科书是一致的。定义
$$R_{\mu\alpha\beta\gamma}=g_{\mu\nu}R^{\nu}_{\alpha\beta\gamma} \tag{50} $$
定义这个量的原因,要谈及逆变张量和协变张量的区别,我们这里主要关心几何观,因此略过对张量的详细分析。这个量被称为完全协变的黎曼曲率张量,有时候也直接叫做黎曼曲率张量,只要不至于混淆,一般不做区分。通过略微冗长的代数运算(在一般的微分几何、黎曼几何或者广义相对论教材中都有),可以得到
$$\begin{aligned}&R_{\mu\alpha\beta\gamma}=-R_{\mu\alpha\gamma\beta}\\
&R_{\mu\alpha\beta\gamma}=-R_{\alpha\mu\beta\gamma}\\
&R_{\mu\alpha\beta\gamma}=R_{\beta\gamma\mu\alpha}\\
&R_{\mu\alpha\beta\gamma}+R_{\mu\beta\gamma\alpha}+R_{\mu\gamma\alpha\beta}=0
\end{aligned} \tag{51} $$

点击阅读全文...

25 Nov

三顾碎纸复原:基于CNN的碎纸复原

赛题回顾

不得不说,2013年的全国数学建模竞赛中的B题真的算是数学建模竞赛中百年难得一遇的好题:题目简洁明了,含义丰富,做法多样,延伸性强,以至于我一直对它念念不忘。因为这个题目,我已经在科学空间写了两篇文章了,分别是《一个人的数学建模:碎纸复原》《迟到一年的建模:再探碎纸复原》。以前做这道题的时候,还只有一点数学建模的知识,而自从学习了数据挖掘、尤其是深度学习之后,我一直想重做这道题,但一直偷懒。这几天终于把它实现了。

如果对题目还不清楚的读者,可以参考前面两篇文章。碎纸复原共有五个附件,分别代表了五种“碎纸片”,即五种不同粒度的碎片。其中附件1和2都不困难,难度主要集中在附件3、4、5,而3、4、5的实现难度基本是一样的。做这道题最容易想到的思路就是贪心算法,即随便选一张图片,然后找到与它最匹配的图片,然后继续匹配下一张。要想贪心算法有效,最关键是找到一个良好的距离函数,来判断两张碎片是否相邻(水平相邻,这里不考虑垂直相邻)。

点击阅读全文...

29 Nov

轻便的深度学习分词系统:NNCWS v0.1

好吧,我也做了一回标题党...其实本文的分词系统是一个三层的神经网络模型,因此只是“浅度学习”,写深度学习是显得更有吸引力。NNCWS的意思是Neutral Network based Chinese Segment System,基于神经网络的中文分词系统,Python写的,目前完全公开,读者可以试用。

闲话多说

这个程序有什么特色?几乎没有!本文就是用神经网络结合字向量实现了一个ngrams形式(程序中使用了7-grams)的分词系统,没有像《【中文分词系列】 4. 基于双向LSTM的seq2seq字标注》那样使用了高端的模型,也没有像《【中文分词系列】 5. 基于语言模型的无监督分词》那样可以无监督训练,这里纯粹是一个有监督的简单模型,训练语料是2014年人民日报标注语料。

点击阅读全文...

1 Dec

基于双向GRU和语言模型的视角情感分析

前段时间参加了一个傻逼的网络比赛——基于视角的领域情感分析,主页在这里。比赛的任务是找出一段话的实体然后判断情感,比如“我喜欢本田,我不喜欢丰田”这句话中,要标出“本田”和“丰田”,并且站在本田的角度,情感是积极的,站在丰田的角度,情感就是消极的。也就是说,等价于将实体识别和情感分析结合起来了。

吐槽

看起来很高端,哪里傻逼了?比赛任务本身还不错,值得研究,然而官方却很傻逼,主要体现为:1、比赛分初赛、复赛、决赛三个阶段,初赛一个多月时间,然后筛选部分进入复赛,复赛就简单换了一点数据,题目、数据的领域都没有变化,复赛也是一个月的时间,这傻逼复赛究竟有什么意义?2、大家可以看看选手们在群里讨论什么:

点击阅读全文...

19 Dec

【备忘】Python中断多重循环的几种思路

跳出单循环

不管是什么编程语言,都有可能会有跳出循环的需求,比如枚举时,找到一个满足条件的数就终止。跳出单循环是很简单的,比如

for i in range(10):
    if i > 5:
        print i
        break

然而,我们有时候会需要跳出多重循环,而break只能够跳出一层循环,比如

for i in range(10):
    for j in range(10):
        if i+j > 5:
            print i,j
            break

这样的代码并非说找到一组i+j > 5就停止,而是连续找到10组,因为break只跳出了for j in range(10)这一重循环。那么,怎么才能跳出多重呢?在此记录备忘一下。

点击阅读全文...