《虚拟的实在(2)》——为什么引力如此复杂?
By 苏剑林 | 2013-06-07 | 32176位读者 | 引用上一篇文章里我已经从我自己的理解角度简单说了一下场论的必要性,这次让我们再次谈到这个话题,企图在文字层面上得到更深入的认识。
上一两周的时间,我一直在找资料,主要是线性引力的资料,并且发现了很多有趣的东西,在此一并与大家分享一下。首先,当我在Google中输入“线性引力”时,我发现了一本“奇书”,一本名副其实的“巨著”——《引力论》!洋洋1300多页的大作,三位“超级巨星”——C.W.麦思纳(Charles W.Misner)、K.S.索恩(Kip S.Thorne)、J.A.惠勒(John Archibald Wheeler)——联合编写,恐怕再也找不到哪本书可以PK它的“全明星阵容”了。该书英文名为Gravitation,中文是由台湾翻译的,繁体中文版。全书讲述了引力的研究历史和发展情况,更重要的是几乎每一处历史都给出了数学论证!最最重要的,作者惠勒还是跟爱因斯坦同一个研究时代的人,我们可以最真实的感受到那年代的研究。看到这里,我就迫不及待地想买了,由于各种原因,我们很难买到,到图书馆找,发现有英文版的,就马上借过来了,另外因为买不到中文版,我只好到网上买了电子版,然后打印出来了。不过不是很清晰,而且自我感觉中文翻译不是很好(当然,已经够我们阅读了)。
本文我们来探讨下列积分的极值曲线:
$$S=\int f(x,y)\sqrt{dx^2+dy^2}=\int f(x,y)ds$$
这本质上也是一个短程线问题。但是它形式比较简答,物理含义也更加明显。比如,如果$f(x,y)$是势函数的话,那么这就是一个求势能最小的二维问题;如果$f(x,y)$是摩擦力函数,那么这就是寻找摩擦力最小的路径问题。不管是哪一种,该问题都有相当的实用价值。下面将其变分:
$$\begin{aligned} \delta S =&\int \delta[f(x,y)\sqrt{dx^2+dy^2}] \\ =&\int [ds\delta f(x,y)+f(x,y)\frac{\delta (dx^2+dy^2)}{2ds}]\\ =&\int ds(\frac{\partial f}{\partial x}\delta x+\frac{\partial}{\partial y}\delta y)+f \frac{dx d(\delta x)+dy d(\delta y)}{ds} \\=&\int ds(\frac{\partial f}{\partial x}\delta x+\frac{\partial}{\partial y}\delta y)+f \frac{dx}{ds} d(\delta x)+\frac{dy}{ds} d(\delta y) \end{aligned}$$
[电子书]《最小作用量原理与物理学的发展》
By 苏剑林 | 2013-08-21 | 48531位读者 | 引用[欧拉数学]找出严谨的答案
By 苏剑林 | 2013-09-09 | 19416位读者 | 引用在之前的一些文章中,我们已经谈到过欧拉数学。总体上来讲,欧拉数学就是具有创造性的、直觉性的技巧和方法,这些方法能够推导出一些漂亮的结果,而方法本身却并不严密。然而,在很多情况下,严密与直觉只是一步之遥。接下来要介绍的是我上学期《数学分析》期末考的一道试题,而我解答这道题的灵感来源便是“欧拉数学”。
数列${a_n}$是递增的正数列,求证:$\sum\limits_{n=1}^{\infty}\left(1-\frac{a_n}{a_{n+1}}\right)$收敛等价于${a_n}$收敛。
据说参考答案给出的方法是利用数列的柯西收敛准则,我也没有仔细去看,我在探索自己的更富有直觉型的方法。这就是所谓的“I do not understand what I can not create.”。下面是我的思路。
一个人的数学建模:碎纸复原
By 苏剑林 | 2013-09-22 | 38823位读者 | 引用求解微分方程的李对称方法(一)
By 苏剑林 | 2013-10-29 | 27462位读者 | 引用在这篇日志发表之前,科学空间在整个十月就只是在国庆期间发了一篇小感想,这是比较少见的。一个小原因是这学期社团(广播台)方面的活动有点多,当然这不是主要的,其实这个月我大多数课余时间放到了两件事情上:一是无线电路的入门,二就是本文所要讲的《求解微分方程的李对称方法》。
李对称方法主要是通过发现微分方程的对称性来求解微分方程。我首次接触到这个方法是在一本叫《微分方程与数学物理问题》的书上边,书中写得很清晰易懂,后来我还买了类似的《微分方程的对称与积分方法》,后者相对抽象一些,讨论也深入一些。在我目前发现的中文书籍中,这是唯一的两本以李对称方法求解微分方程为主题的书。这两本书还有一个共同特点,就是它们都是外国教材的翻译版。
力学系统及其对偶性(三)
By 苏剑林 | 2013-11-15 | 17338位读者 | 引用在上一篇文章中,我已经初步地从最小作用量原理的角度来观察对偶定律的表现。虽然那是一种便捷有效的方法,但是还是给我们流下了一些遗憾。上一节是从几何形式的作用量原理出发的,而没有在一般形式的作用量框架下讨论。因为如果在$S=\int Ldt=\int (T-U)dt$的形式下讨论坐标变换问题会出现困难,困难源于我们进行了变换$d\tau=|z|^2 dt$,这导致了时间和空间的耦合,变分不能简单地进行。但是,这并非无法解决的问题。我们还是可以在基本的作用量原理之下讨论变换问题。下面将对此问题进行讨论。
变分中的变量代换
考虑一个一般的保守系统的作用量:
$$S=\int_{t_1}^{t_2} L(q,\frac{dq}{dt})dt$$
求解微分方程的李对称方法(二)
By 苏剑林 | 2013-11-26 | 23617位读者 | 引用由于重装系统时的粗心大意,笔者把《求解微分方程的李对称方法》的Word文档弄丢了,更不幸的是存有该文档的U盘也弄丢了~没办法,只好重新把这篇文章录入了。幸好之前曾把它打印成纸质版,还有旧稿可以参考。现发布《求解微分方程的李对称方法(二)》,希望能够为对李对称方法有兴趣的朋友提供些许资源。
相比(一),(二)将所有内容重新用CTex录入了,果然,$\LaTeX$才是写数学论文软件中的佼佼者,虽然是纯代码编辑,但是这正符合我追求简洁清晰的风格。在内容上,(二)增加了一阶常微分方程组的内容,并对(一)的部分细节做了修改,本文完成后就初步相对完整地叙述了一阶常微分方程组的李对称积分的思路,内容增加到了13页。而在接下来的(三)中,将会提供李代数的内容;如果有(四)的话,就会谈到李对称方法的计算机实现。希望大家会喜欢这系列文章。更期待大家的读后感(包括挑错)^_^
最近评论