《教材如何写》:BoJone的粗浅看法
By 苏剑林 | 2011-04-19 | 22053位读者 | 引用在科学空间所转载的上两篇文章中,matrix67和范翔都表达了他们对大多数现行(数学&物理)教材的不满和对编写教材的一些建议。今天,BoJone也来发发牢骚,说说教材。
首先得说明下,目前BoJone只是一个高二生,或者说,是一个爱好数学、物理的高中生,因此本文所描写的观点仅仅是个人的看法,而且应该带有诸多的不成熟看法。不论如何,谨在此提出,欢迎讨论。
BoJone认为,人类都有着追求利益的倾向,要是一样东西能够对我们有“好处”,给我们带来方便,那么我们就很乐意去拥有它,或者去学习它。数学、物理理论也应当如此,当教材编写者想要引入一个新概念或介绍一个新理论、方法时,首先要做的并不是如何从严格上定义、推导、证明、最后才去应用,而相反,他们应该要大书特书引入新概念和方法后有什么“好处”。只有了解到了它的用处之后,读者才会有明确的目的和足够的心思去进一步的学习。这一步对于一些抽象的理论的学习是很重要的,要不然,那么繁琐、枯燥的推理证明过程会抹杀掉绝大多数人的信心,纵使后来“终于”弄懂了它的用处,也兴趣倍减。说到这里,就不得不批评一下人教版数学选修教材中的一个很让人反感的做法,在《选修2-2》中它引入了复数,但仅仅简单交待了复数的加减乘除运算和模等定义后就了事,对于复数的一些精华,比如复数乘法代表着坐标旋转等,则全然不提,这样的“复数”有何意义呢?有同学问我:“学复数有什么用?”我只能回答:“就目前来说,复数的唯一作用就是增加了我们高考的负担。”
看完了刘亦菲版《倩女幽魂》
By 苏剑林 | 2011-04-23 | 32565位读者 | 引用自《仙剑奇侠传1》开始,BoJone一直都有追看刘亦菲和胡歌的影视作品,尤其是古装片。胡歌版的《神雕英雄传》、《仙剑奇侠传3》连续剧分别只花了4天时间就把它们看完了(有点狂...),还有他的《神话》等。至于刘亦菲,在我的印象里她这两年没有拍过古装片了,上一部好像就是《功夫之王》了,不过这部电影我不大喜欢(有点看不懂...)。不过刘亦菲的几部古装连续剧,如《神雕侠侣》、《天龙八部》还有《仙剑奇侠传1》中的“神仙姐姐”形象颇让人深刻,也许这正是她的清纯气质吧。
我记得去年就在广州日报上看到新版《倩女幽魂》的拍摄消息了,一直都有关注其拍摄进度。好像是在本月初就定下4月22日公映了,但事实上提前公映了。据说影迷本对这部影片不抱太大希望,但是上映后人们大都改观了,好评很多,票房也一路飙升。
其实BoJone是不懂得去欣赏一部电影的。只要影片中的情节不是特别地烂,我都觉得影片不错。看了这句话,一些资深影迷基本可以忽略我了,因为本文几乎没有什么可参考的价值。^_^
从对称角度看代数方程
By 苏剑林 | 2011-04-29 | 26699位读者 | 引用这些日子来,BoJone迷上了两个东西:最小作用量和对称。这两个“东西”在物理学中几乎占据着最重要的地位,前边已经说过,通过最小作用量原理能够构建起当代整个物理学的框架,体现着自然界的“经济头脑”;后者则是守恒的体现,也对应着自然界的“美感”。本文主要是从最简单的层面谈谈对称。
对称的东西很重要,很美。当然,这里所指的是数学上的对称。数学上有很多问题都可以列出对称的式子,而且由于其对称性,因此求解过程一般比不对称的式子简单不少。据说,当代最前沿的物理学框架都是用群论描述的(包括广义相对论),而群论正是用来研究对称的有力工具,可见,对称和对称的方法在实际中有着广泛的应用。(当然本文不讨论群论,关键是BoJone也不懂群论...^_^)
我们先来看二次方程,根据韦达定理,二次方程都可以表达成下面的形式:
$$\begin{aligned}x_1+x_2=a \\ x_1 x_2=b\end{aligned}$$
这是一个多对称的形式!这里的对称体现在将$x_1,x_2$互相替换后方程形式依然不变。如果我们设$x_1=y_1+y_2,x_2=y_1-y_2$,就可以变成
$$2y_1=a,y_1^2-y_2^2=b$$
这样很快就求出$y_1,y_2$了,继而能够求出方程的两个根。
《教材如何写》:对于教材写法的一点考虑
By 苏剑林 | 2011-04-16 | 24377位读者 | 引用转载自:eaglefantasy.com
有感于Matrix67神牛的这篇文章(强烈建议大家去读一读),我也发表一下自己对于教材编写的一点看法。
1.对线性代数的吐槽
(没学过线性代数的同学请忽略下面3段往后接着看。)
我一直觉得线性代数用那种严格公理化的语言写成课本根本不适合初学者学习,一开始学习线性代数的时候,我本人对很多概念的直观意义根本就是完全不知道。我们的课本是丘维声的《简明线性代数》,我在此毫不掩饰的表示对这本教材的鄙视:这本教材居然是按照这样的顺序讲线性代数的:线性方程组->行列式->线性方程组的进一步讨论->矩阵的运算->一大堆东西->线性空间->线性映射->一大堆东西。这个狗屁顺序直接导致我前半个学期一直以为线性代数就是研究怎么解线性方程组的,我心想,这么简单的问题,具体问题谁都会解,值得这么大动干戈的定义出这么大堆东西么。。。一直到线性空间那一个章节以前,我完全就不知道线性代数整个是在干什么..后来学的多了我才知道,其实线性代数就是研究线性空间和线性映射的嘛,什么线性方程组,根本没那么重要。一个更加合理的顺序是:先讲线性空间、线性映射,其中明确说明矩阵就是线性映射,然后再讲行列式,然后线性方程组只作为一个例子出现就可以了。
达尔文的进化学说告诉我们,自然界总是在众多的生物中挑出最能够适应环境的物种,赋予它们更高的生存几率,久而久之,这些物种经过亿万年的“优胜劣汰”,进化成了今天的千奇百怪的生物。无疑,经过长期的选择,优良的形状会被累积下来,换句话讲,这些物种在某些环境适应能力方面已经达到最优或近乎最优的状态(又是一个极值问题了)。好,现在我们来考虑蘑菇。
蘑菇是一种真菌生物,一般生长在阴暗潮湿的环境中。喜欢湿润的它自然也不希望散失掉过多的水分,因此,它努力地调整自身的形状,使它的“失水”尽可能地少。假设单位面积的蘑菇的失水速度是一致的,那么问题就变成了使一个给定体积的立体表面积尽可能少的问题了。并且考虑到水平各向同性生长的问题,理想的蘑菇形状应该就是一个平面图形的旋转体。那么这个旋转体是什么呢?聪明的你是否想到了是一个球体(的一部分)呢?
地球引力场的悬链线方程
By 苏剑林 | 2011-05-15 | 63587位读者 | 引用之前曾在《自然极值》系列文章中提到过均匀重力场下的悬链线形状问题,并且在那文章中向读者提出:在一个质点(地球)引力场中的悬链线形状会是怎么样的。说实话,提出这个问题的时候,我还不懂怎么解答这个问题,不过现在会了,回头一看,已经几个月了,时间过得真快...
与之前的思路一样,我们依旧采用的是“平衡态公理”,即总势能最小。从天体力学中我们知道,任意两个质点间的势能为$-\frac{Gm_1 m_2}{r}$。对于本题的悬链线问题,我们可以把地球放到坐标原点位置,而悬链的两个固定点分别为$(x_1,y_1)$和$(x_2,y_2)$,链的总长度为l。即
$$\int_{x_1}^{x_2} \sqrt{dx^2+dy^2}=l$$
cos 1°的根式表达式
By 苏剑林 | 2011-06-26 | 59455位读者 | 引用BoJone记得自己第一次接触三角函数大概是小学五、六年级的时候,那时候我拿来了表姐的初中数学书来看。看到三角函数一章后,饶有兴致,希望能够找到一个根据角度来求三角函数值的方法,可是书本上只是教我去用计算器算和查表,这让我这个爱好计算的孩子大失所望。这个问题直到高一才得以解决,原来这已经涉及到了微积分中的泰勒级数了...
我记得为了求任意角度的三角函数值,我曾经根据30°、45°和60°的正弦值拟合过一条近似公式出来:
$$\sin A \approx \sqrt{\frac{A}{60}-1/4}$$
其中A以角度为单位,大致适用于25°~60°,精度好像有两位小数。当然,这个结果在今天看来是很粗糙的,但是这毕竟是我的“小学的作品”!在此留念一翻。
最近评论