未来的天地枢纽——太空天梯
By 苏剑林 | 2010-10-22 | 24410位读者 | 引用扬帆——在宇宙的海洋中航行
By 苏剑林 | 2010-10-24 | 22661位读者 | 引用太阳帆技术的粗浅分析
By 苏剑林 | 2010-10-24 | 38189位读者 | 引用太阳帆技术的粗浅分析(补充)
By 苏剑林 | 2010-10-30 | 18036位读者 | 引用11月03日美国“发现号”航天飞机“绝唱”
By 苏剑林 | 2010-10-30 | 18541位读者 | 引用“天地图”试用——很细致,有瑕疵
By 苏剑林 | 2010-10-30 | 19857位读者 | 引用这个星期对微分方程的认识
By 苏剑林 | 2010-11-06 | 36303位读者 | 引用这个星期研究了两道微分方程问题:“导弹跟踪”以及“太阳炉”问题。从中我加深了对微分方程的理解,也熟悉了微分方程的相关运算。仅此记录,权当抛砖引玉。
一、微分方程的本质
很多读者都知道,自从牛顿和莱布尼兹发明微积分之后,微积分就迅速地渗透到了几乎所有的学科,后来发展出许多出色的分支,如变分、微分方程等。众所周知,微分方程是解决很多重要问题的工具。不知道各位读者对微分及微分方程的认识如何?其实对于常微分方程而言,它的本质和我们已经学习过的代数方程一样,只不过相互之间的对应运算关系除了常规的加减乘除幂等之外,还多了两个相互关系:微分和积分。例如对于一阶微分方程$\dot{y}=f(x,y)$,也许大家都认为它是一个二元方程,其实不然,这是一个“四个未知数、三道方程”所组成的方程组,我们可以将它写成
$$dy=f(x,y)dx,y=\int dy,x=\int dx$$
警察捉贼,追牛问题,导弹跟踪
By 苏剑林 | 2010-11-06 | 54634位读者 | 引用王二小的牛跑了,当他发现时,牛在他正南方300米。且一直向正西方向匀速的跑,王二小立即追牛,他不是朝着一个固定的方向,而是每时每刻都朝着牛的方向跑,且速度是牛速度的4/3倍。当他追上牛时王二小共跑了多远?
问题分析
咋看起来,追牛和导弹是风牛马不相及的两件事:一个是生活小事,一个是物理问题,怎么能够扯到一块呢?
回想一下平时警察抓小偷的过程。警察不是物理学家,不会也可不能先去研究小偷的逃走路线函数,然后设计最小追赶时间的路程吧?那么,在不能预知小偷逃跑路线的前提下,警察要怎样捉小偷呢?很简单,盯死他!是的,只要你以更快的速度,一直朝着他跑,总能够追到的。继续联想下:要想用导弹跟踪摧毁一首敌舰,不也是只能够采用这种方式吗?回看文章开始的“追牛问题”,本质上不是一样的吗?以下是上海交大提出的导弹跟踪问题:
最近评论