从熵不变性看Attention的Scale操作
By 苏剑林 | 2021-12-21 | 120486位读者 | 引用当前Transformer架构用的最多的注意力机制,全称为“Scaled Dot-Product Attention”,其中“Scaled”是因为在$Q,K$转置相乘之后还要除以一个$\sqrt{d}$再做Softmax(下面均不失一般性地假设$Q,K,V\in\mathbb{R}^{n\times d}$):
\begin{equation}Attention(Q,K,V) = softmax\left(\frac{QK^{\top}}{\sqrt{d}}\right)V\label{eq:std}\end{equation}
在《浅谈Transformer的初始化、参数化与标准化》中,我们已经初步解释了除以$\sqrt{d}$的缘由。而在这篇文章中,笔者将从“熵不变性”的角度来理解这个缩放操作,并且得到一个新的缩放因子。在MLM的实验显示,新的缩放因子具有更好的长度外推性能。
熵不变性
我们将一般的Scaled Dot-Product Attention改写成
\begin{equation}\boldsymbol{o}_i = \sum_{j=1}^n a_{i,j}\boldsymbol{v}_j,\quad a_{i,j}=\frac{e^{\lambda \boldsymbol{q}_i\cdot \boldsymbol{k}_j}}{\sum\limits_{j=1}^n e^{\lambda \boldsymbol{q}_i\cdot \boldsymbol{k}_j}}\end{equation}
其中$\lambda$是缩放因子,它跟$\boldsymbol{q}_i,\boldsymbol{k}_j$无关,但原则上可以跟长度$n$、维度$d$等参数有关,目前主流的就是$\lambda=1/\sqrt{d}$。
听说Attention与Softmax更配哦~
By 苏剑林 | 2022-04-07 | 79304位读者 | 引用不知道大家留意到一个细节没有,就是当前NLP主流的预训练模式都是在一个固定长度(比如512)上进行,然后直接将预训练好的模型用于不同长度的任务中。大家似乎也没有对这种模式有过怀疑,仿佛模型可以自动泛化到不同长度是一个“理所应当”的能力。
当然,笔者此前同样也没有过类似的质疑,直到前几天笔者做了Base版的GAU实验后才发现GAU的长度泛化能力并不如想象中好。经过进一步分析后,笔者才明白原来这种长度泛化的能力并不是“理所当然”的......
模型回顾
在《FLASH:可能是近来最有意思的高效Transformer设计》中,我们介绍了“门控注意力单元GAU”,它是一种融合了GLU和Attention的新设计。
除了效果,GAU在设计上给我们带来的冲击主要有两点:一是它显示了单头注意力未必就逊色于多头注意力,这奠定了它“快”、“省”的地位;二是它是显示了注意力未必需要Softmax归一化,可以换成简单的$\text{relu}^2$除以序列长度:
\begin{equation}\boldsymbol{A}=\frac{1}{n}\text{relu}^2\left(\frac{\mathcal{Q}(\boldsymbol{Z})\mathcal{K}(\boldsymbol{Z})^{\top}}{\sqrt{s}}\right)=\frac{1}{ns}\text{relu}^2\left(\mathcal{Q}(\boldsymbol{Z})\mathcal{K}(\boldsymbol{Z})^{\top}\right)\end{equation}
相对位置编码Transformer的一个理论缺陷与对策
By 苏剑林 | 2022-06-07 | 96465位读者 | 引用位置编码是Transformer中很重要的一环,在《让研究人员绞尽脑汁的Transformer位置编码》中我们就总结了一些常见的位置编码设计。大体上,我们将Transformer的位置编码分为“绝对位置编码”和“相对位置编码”两类,其中“相对位置编码”在众多NLP/CV的实验表现相对来说更加好些。
然而,我们可以发现,目前相对位置编码几乎都是在Softmax之前的Attention矩阵上进行操作的,这种施加方式实际上都存在一个理论上的缺陷,使得Transformer无法成为“万能拟合器”。本文就来分析这个问题,并探讨一些解决方案。
简单探针
顾名思义,位置编码就是用来给模型补充上位置信息的。那么,如何判断一个模型有没有足够的识别位置的能力呢?笔者之前曾构思过一个简单的探针实验:
对于一个有识别位置能力的模型,应该有能力准确实现如下映射 \begin{equation}\begin{array}{lc} \text{输入:} & [0, 0, \cdots, 0, 0] \\ & \downarrow\\ \text{输出:} & [1, 2, \cdots, n-1, n] \end{array}\end{equation}
Transformer升级之路:8、长度外推性与位置鲁棒性
By 苏剑林 | 2023-01-31 | 47646位读者 | 引用上一篇文章《Transformer升级之路:7、长度外推性与局部注意力》我们讨论了Transformer的长度外推性,得出的结论是长度外推性是一个训练和预测的不一致问题,而解决这个不一致的主要思路是将注意力局部化,很多外推性好的改进某种意义上都是局部注意力的变体。诚然,目前语言模型的诸多指标看来局部注意力的思路确实能解决长度外推问题,但这种“强行截断”的做法也许会不符合某些读者的审美,因为人工雕琢痕迹太强,缺乏了自然感,同时也让人质疑它们在非语言模型任务上的有效性。
本文我们从模型对位置编码的鲁棒性角度来重新审视长度外推性这个问题,此思路可以在基本不对注意力进行修改的前提下改进Transformer的长度外推效果,并且还适用多种位置编码,总体来说方法更为优雅自然,而且还适用于非语言模型任务。
Naive Bayes is all you need ?
By 苏剑林 | 2023-06-08 | 49265位读者 | 引用很抱歉,起了这么个具有标题党特征的题目。在写完《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度》之后,笔者就觉得朴素贝叶斯(Naive Bayes)跟Attention机制有很多相同的特征,后来再推导了一下发现,Attention机制其实可以看成是一种广义的、参数化的朴素贝叶斯。既然如此,“Attention is All You Need”不也就意味着“Naive Bayes is all you need”了?这就是本文标题的缘由。
接下来笔者将介绍自己的思考过程,分析如何从朴素贝叶斯角度来理解Attention机制。
朴素贝叶斯
本文主要考虑语言模型,它要建模的是$p(x_t|x_1,\cdots,x_{t-1})$。根据贝叶斯公式,我们有
\begin{equation}p(x_t|x_1,\cdots,x_{t-1}) = \frac{p(x_1,\cdots,x_{t-1}|x_t)p(x_t)}{p(x_1,\cdots,x_{t-1})}\propto p(x_1,\cdots,x_{t-1}|x_t)p(x_t)\end{equation}
为什么现在的LLM都是Decoder-only的架构?
By 苏剑林 | 2023-03-17 | 112602位读者 | 引用LLM是“Large Language Model”的简写,目前一般指百亿参数以上的语言模型,主要面向文本生成任务。跟小尺度模型(10亿或以内量级)的“百花齐放”不同,目前LLM的一个现状是Decoder-only架构的研究居多,像OpenAI一直坚持Decoder-only的GPT系列就不说了,即便是Google这样的并非全部押注在Decoder-only的公司,也确实投入了不少的精力去研究Decoder-only的模型,如PaLM就是其中之一。那么,为什么Decoder-only架构会成为LLM的主流选择呢?
知乎上也有同款问题《为什么现在的LLM都是Decoder only的架构?》,上面的回答大多数聚焦于Decoder-only在训练效率和工程实现上的优势,那么它有没有理论上的优势呢?本文试图从这个角度进行简单的分析。
统一视角
需要指出的是,笔者目前训练过的模型,最大也就是10亿级别的,所以从LLM的一般概念来看是没资格回答这个问题的,下面的内容只是笔者根据一些研究经验,从偏理论的角度强行回答一波。文章多数推论以自己的实验结果为引,某些地方可能会跟某些文献的结果冲突,请读者自行取舍。
NBCE:使用朴素贝叶斯扩展LLM的Context处理长度
By 苏剑林 | 2023-05-23 | 83356位读者 | 引用在LLM时代还玩朴素贝叶斯(Naive Bayes)?
这可能是许多读者在看到标题后的首个想法。确实如此,当古老的朴素贝叶斯与前沿的LLM相遇时,产生了令人惊讶的效果——我们可以直接扩展现有LLM模型的Context处理长度,无需对模型进行微调,也不依赖于模型架构,具有线性效率,而且效果看起来还不错——这就是本文所提出的NBCE(Naive Bayes-based Context Extension)方法。
摸石过河
假设$T$为要生成的token序列,$S_1,S_2,\cdots,S_n$是给定的若干个相对独立的Context集合(比如$n$个不同的段落,至少不是一个句子被分割为两个片段那种),假设它们的总长度已经超过了训练长度,而单个$S_k$加$T$还在训练长度内。我们需要根据$S_1,S_2,\cdots,S_n$生成$T$,即估计$p(T|S_1, S_2,\cdots,S_n)$。
《为什么现在的LLM都是Decoder-only的架构?》FAQ
By 苏剑林 | 2023-03-20 | 53195位读者 | 引用上周笔者写了《为什么现在的LLM都是Decoder-only的架构?》,总结了一下我在这个问题上的一些实验结论和猜测。果然是热点问题流量大,paperweekly的转发没多久阅读量就破万了,知乎上点赞数也不少。在几个平台上,陆陆续续收到了读者的一些意见或者疑问,总结了其中一些有代表性的问题,做成了本篇FAQ,希望能进一步帮助大家解决疑惑。
回顾
在《为什么现在的LLM都是Decoder-only的架构?》中,笔者对GPT和UniLM两种架构做了对比实验,然后结合以往的研究经历,猜测了如下结论:
1、输入部分的注意力改为双向不会带来收益,Encoder-Decoder架构的优势很可能只是源于参数翻倍;
2、双向注意力没有带来收益,可能是因为双向注意力的低秩问题导致效果下降。
所以,基于这两点推测,我们得到结论:
在同等参数量、同等推理成本下,Decoder-only架构是最优选择。
最近评论