8 Mar

Transformer升级之路:1、Sinusoidal位置编码追根溯源

最近笔者做了一些理解和改进Transformer的尝试,得到了一些似乎还有价值的经验和结论,遂开一个专题总结一下,命名为“Transformer升级之路”,既代表理解上的深入,也代表结果上的改进。

作为该专题的第一篇文章,笔者将会介绍自己对Google在《Attention is All You Need》中提出来的Sinusoidal位置编码
\begin{equation}\left\{\begin{aligned}&\boldsymbol{p}_{k,2i}=\sin\Big(k/10000^{2i/d}\Big)\\
&\boldsymbol{p}_{k, 2i+1}=\cos\Big(k/10000^{2i/d}\Big)
\end{aligned}\right.\label{eq:sin}\end{equation}
的新理解,其中$\boldsymbol{p}_{k,2i},\boldsymbol{p}_{k,2i+1}$分别是位置$k$的编码向量的第$2i,2i+1$个分量,$d$是向量维度。

作为位置编码的一个显式解,Google在原论文中对它的描述却寥寥无几,只是简单提及了它可以表达相对位置信息,后来知乎等平台上也出现了一些解读,它的一些特点也逐步为大家所知,但总体而言比较零散。特别是对于“它是怎么想出来的”、“非得要这个形式不可吗”等原理性问题,还没有比较好的答案。

因此,本文主要围绕这些问题展开思考,可能在思考过程中读者会有跟笔者一样的感觉,即越思考越觉得这个设计之精妙漂亮,让人叹服~

点击阅读全文...

15 Mar

WGAN的成功,可能跟Wasserstein距离没啥关系

WGAN,即Wasserstein GAN,算是GAN史上一个比较重要的理论突破结果,它将GAN中两个概率分布的度量从f散度改为了Wasserstein距离,从而使得WGAN的训练过程更加稳定,而且生成质量通常也更好。Wasserstein距离跟最优传输相关,属于Integral Probability Metric(IPM)的一种,这类概率度量通常有着更优良的理论性质,因此WGAN的出现也吸引了很多人从最优传输和IPMs的角度来理解和研究GAN模型。

然而,最近Arxiv上的论文《Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)》则指出,尽管WGAN是从Wasserstein GAN推导出来的,但是现在成功的WGAN并没有很好地近似Wasserstein距离,相反如果我们对Wasserstein距离做更好的近似,效果反而会变差。事实上,笔者一直以来也有这个疑惑,即Wasserstein距离本身并没有体现出它能提升GAN效果的必然性,该论文的结论则肯定了该疑惑,所以GAN能成功的原因依然很迷~

点击阅读全文...

23 Mar

Transformer升级之路:2、博采众长的旋转式位置编码

上一篇文章中,我们对原始的Sinusoidal位置编码做了较为详细的推导和理解,总的感觉是Sinusoidal位置编码是一种“想要成为相对位置编码的绝对位置编码”。一般来说,绝对位置编码具有实现简单、计算速度快等优点,而相对位置编码则直接地体现了相对位置信号,跟我们的直观理解吻合,实际性能往往也更好。由此可见,如果可以通过绝对位置编码的方式实现相对位置编码,那么就是“集各家之所长”、“鱼与熊掌兼得”了。Sinusoidal位置编码隐约做到了这一点,但并不够好。

本文将会介绍我们自研的Rotary Transformer(RoFormer)模型,它的主要改动是应用了笔者构思的“旋转式位置编码(Rotary Position Embedding,RoPE)”,这是一种配合Attention机制能达到“绝对位置编码的方式实现相对位置编码”的设计。而也正因为这种设计,它还是目前唯一一种可用于线性Attention的相对位置编码。

点击阅读全文...

11 Apr

一月份的时候,笔者写了《你可能不需要BERT-flow:一个线性变换媲美BERT-flow》,指出无监督语义相似度的SOTA模型BERT-flow其实可以通过一个简单的线性变换(白化操作,BERT-whitening)达到。随后,我们进一步完善了实验结果,写成了论文《Whitening Sentence Representations for Better Semantics and Faster Retrieval》。这篇博客将对这篇论文的内容做一个基本的梳理,并在5个中文语义相似度任务上进行了补充评测,包含了600多个实验结果。

方法概要

BERT-whitening的思路很简单,就是在得到每个句子的句向量$\{x_i\}_{i=1}^N$后,对这些矩阵进行一个白化(也就是PCA),使得每个维度的均值为0、协方差矩阵为单位阵,然后保留$k$个主成分,流程如下图:

BERT-whitening的基本流程

BERT-whitening的基本流程

点击阅读全文...

22 Apr

Transformer升级之路:3、从Performer到线性Attention

看过笔者之前的文章《线性Attention的探索:Attention必须有个Softmax吗?》《Performer:用随机投影将Attention的复杂度线性化》的读者,可能会觉得本文的标题有点不自然,因为是先有线性Attention然后才有Performer的,它们的关系为“Performer是线性Attention的一种实现,在保证线性复杂度的同时保持了对标准Attention的近似”,所以正常来说是“从线性Attention到Performer”才对。

然而,本文并不是打算梳理线性Attention的发展史,而是打算反过来思考Performer给线性Attention所带来的启示,所以是“从Performer到线性Attention”。

激活函数

线性Attention的常见形式是
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V})_i = \frac{\sum\limits_{j=1}^n \text{sim}(\boldsymbol{q}_i, \boldsymbol{k}_j)\boldsymbol{v}_j}{\sum\limits_{j=1}^n \text{sim}(\boldsymbol{q}_i, \boldsymbol{k}_j)} = \frac{\sum\limits_{j=1}^n \phi(\boldsymbol{q}_i)^{\top} \varphi(\boldsymbol{k}_j)\boldsymbol{v}_j}{\sum\limits_{j=1}^n \phi(\boldsymbol{q}_i)^{\top} \varphi(\boldsymbol{k}_j)}\end{equation}

点击阅读全文...

26 Apr

中文任务还是SOTA吗?我们给SimCSE补充了一些实验

今年年初,笔者受到BERT-flow的启发,构思了成为“BERT-whitening”的方法,并一度成为了语义相似度的新SOTA(参考《你可能不需要BERT-flow:一个线性变换媲美BERT-flow》,论文为《Whitening Sentence Representations for Better Semantics and Faster Retrieval》)。然而“好景不长”,在BERT-whitening提交到Arxiv的不久之后,Arxiv上出现了至少有两篇结果明显优于BERT-whitening的新论文

第一篇是《Generating Datasets with Pretrained Language Models》,这篇借助模板从GPT2_XL中无监督地构造了数据对来训练相似度模型,个人认为虽然有一定的启发而且效果还可以,但是复现的成本和变数都太大。另一篇则是本文的主角《SimCSE: Simple Contrastive Learning of Sentence Embeddings》,它提出的SimCSE在英文数据上显著超过了BERT-flow和BERT-whitening,并且方法特别简单

那么,SimCSE在中文上同样有效吗?能大幅提高中文语义相似度的效果吗?本文就来做些补充实验。

点击阅读全文...

10 May

Transformer升级之路:4、二维位置的旋转式位置编码

在之前的文章《Transformer升级之路:2、博采众长的旋转式位置编码》中我们提出了旋转式位置编码RoPE以及对应的Transformer模型RoFormer。由于笔者主要研究的领域还是NLP,所以本来这个事情对于笔者来说已经完了。但是最近一段时间,Transformer模型在视觉领域也大火,各种Vision Transformer(ViT)层出不穷,于是就有了问题:二维情形的RoPE应该是怎样的呢?

咋看上去,这个似乎应该只是一维情形的简单推广,但其中涉及到的推导和理解却远比我们想象中复杂,本文就对此做一个分析,从而深化我们对RoPE的理解。

二维RoPE

什么是二维位置?对应的二维RoPE又是怎样的?它的难度在哪里?在这一节中,我们先简单介绍二维位置,然后直接给出二维RoPE的结果和推导思路,在随后的几节中,我们再详细给出推导过程。

点击阅读全文...

27 Sep

关于维度公式“n > 8.33 log N”的可用性分析

在之前的文章《最小熵原理(六):词向量的维度应该怎么选择?》中,我们基于最小熵思想推导出了一个词向量维度公式“$n > 8.33\log N$”,然后在《让人惊叹的Johnson-Lindenstrauss引理:应用篇》中我们进一步指出,该结果与JL引理所给出的$\mathcal{O}(\log N)$是吻合的。

既然理论上看上去很完美,那么自然就有读者发问了:实验结果如何呢?8.33这个系数是最优的吗?本文就对此问题的相关内容做一个简单汇总。

词向量

首先,我们可以直接,当$N$为10万时,$8.33\log N\approx 96$,当$N$为500万时,$8.33\log N\approx 128$。这说明,至少在数量级上,该公式给出的结果是很符合我们实际所用维度的,因为在词向量时代,我们自行训练的词向量维度也就是100维左右。可能有读者会质疑,目前开源的词向量多数是300维的,像BERT的Embedding层都达到了768维,这不是明显偏离了你的结果了?

点击阅读全文...