圆内随机n点在同一个圆心角为θ的扇形的概率
By 苏剑林 | 2022-10-25 | 35474位读者 | 引用“十字架”组合计数问题浅试
By 苏剑林 | 2022-10-09 | 19102位读者 | 引用生成扩散模型漫谈(十五):构建ODE的一般步骤(中)
By 苏剑林 | 2022-12-22 | 27439位读者 | 引用上周笔者写了《生成扩散模型漫谈(十四):构建ODE的一般步骤(上)》(当时还没有“上”这个后缀),本以为已经窥见了构建ODE扩散模型的一般规律,结果不久后评论区大神 @gaohuazuo 就给出了一个构建格林函数更高效、更直观的方案,让笔者自愧不如。再联想起之前大神之前在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》同样也给出了一个关于扩散ODE的精彩描述(间接启发了上一篇博客的结果),大神的洞察力不得不让人叹服。
经过讨论和思考,笔者发现大神的思路本质上就是一阶偏微分方程的特征线法,通过构造特定的向量场保证初值条件,然后通过求解微分方程保证终值条件,同时保证了初值和终值条件,真的非常巧妙!最后,笔者将自己的收获总结成此文,作为上一篇的后续。
前情回顾
简单回顾一下上一篇文章的结果。假设随机变量$\boldsymbol{x}_0\in\mathbb{R}^d$连续地变换成$\boldsymbol{x}_T$,其变化规律服从ODE
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq-ode}\end{equation}
生成扩散模型漫谈(十四):构建ODE的一般步骤(上)
By 苏剑林 | 2022-12-15 | 52731位读者 | 引用书接上文,在《生成扩散模型漫谈(十三):从万有引力到扩散模型》中,我们介绍了一个由万有引力启发的、几何意义非常清晰的ODE式生成扩散模型。有的读者看了之后就疑问:似乎“万有引力”并不是唯一的选择,其他形式的力是否可以由同样的物理绘景构建扩散模型?另一方面,该模型在物理上确实很直观,但还欠缺从数学上证明最后确实能学习到数据分布。
本文就尝试从数学角度比较精确地回答“什么样的力场适合构建ODE式生成扩散模型”这个问题。
基础结论
要回答这个问题,需要用到在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》中我们推导过的一个关于常微分方程对应的分布变化的结论。
考虑$\boldsymbol{x}_t\in\mathbb{R}^d, t\in[0,T]$的一阶(常)微分方程(组)
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}
Transformer升级之路:6、旋转位置编码的完备性分析
By 苏剑林 | 2022-12-28 | 37535位读者 | 引用在去年的文章《Transformer升级之路:2、博采众长的旋转式位置编码》中,笔者提出了旋转位置编码(RoPE),当时的出发点只是觉得用绝对位置来实现相对位置是一件“很好玩的事情”,并没料到其实际效果还相当不错,并为大家所接受,不得不说这真是一个意外之喜。后来,在《Transformer升级之路:4、二维位置的旋转式位置编码》中,笔者讨论了二维形式的RoPE,并研究了用矩阵指数表示的RoPE的一般解。
既然有了一般解,那么自然就会引出一个问题:我们常用的RoPE,只是一个以二维旋转矩阵为基本单元的分块对角矩阵,如果换成一般解,理论上效果会不会更好呢?本文就来回答这个问题。
指数通解
在《Transformer升级之路:4、二维位置的旋转式位置编码》中,我们将RoPE抽象地定义为任意满足下式的方阵
\begin{equation}\boldsymbol{\mathcal{R}}_m^{\top}\boldsymbol{\mathcal{R}}_n=\boldsymbol{\mathcal{R}}_{n-m}\label{eq:re}\end{equation}
智能家居之热水器零冷水技术原理浅析
By 苏剑林 | 2023-01-04 | 41405位读者 | 引用如果家庭使用单一的热水器集中供热水,那么当我们想要用热水时,往往需要先放一段时间的冷水,而如果放冷水时间比较长的话,就会比较影响体验。所谓零冷水,实际上就是想办法提前把热水管中的冷水排放掉,以达到(几乎)瞬间出热水的效果。事实上,零冷水并不是什么高大上的技术,但可能由于观念没跟上、理解上有误等原因,零冷水技术还没有在家庭中得到普及,不过随着大家对生活品质的要求越来越高,零冷水确实在慢慢流行起来了。
本文来简单分析一下零冷水技术的实现原理,包括各种方案的优缺点和自省DIY的参考思路。
写在前面
在文章开始,需要纠正很多人的一个错误观念:零冷水不是为了省钱,而是为了提升生活品质。如果你是省钱最大的心态,那么接下来的内容就可以不用看了,零冷水技术对你毫无价值。
Transformer升级之路:7、长度外推性与局部注意力
By 苏剑林 | 2023-01-12 | 85334位读者 | 引用对于Transformer模型来说,其长度的外推性是我们一直在追求的良好性质,它是指我们在短序列上训练的模型,能否不用微调地用到长序列上并依然保持不错的效果。之所以追求长度外推性,一方面是理论的完备性,觉得这是一个理想模型应当具备的性质,另一方面也是训练的实用性,允许我们以较低成本(在较短序列上)训练出一个长序列可用的模型。
下面我们来分析一下加强Transformer长度外推性的关键思路,并由此给出一个“超强基线”方案,然后我们带着这个“超强基线”来分析一些相关的研究工作。
思维误区
第一篇明确研究Transformer长度外推性的工作应该是ALIBI,出自2021年中期,距今也不算太久。为什么这么晚(相比Transformer首次发表的2017年)才有人专门做这个课题呢?估计是因为我们长期以来,都想当然地认为Transformer的长度外推性是位置编码的问题,找到更好的位置编码就行了。
注意力和Softmax的两点有趣发现:鲁棒性和信息量
By 苏剑林 | 2023-04-25 | 28472位读者 | 引用最近几周笔者一直都在思考注意力机制的相关性质,在这个过程中对注意力及Softmax有了更深刻的理解。在这篇文章中,笔者简单分享其中的两点:
1、Softmax注意力天然能够抵御一定的噪声扰动;
2、从信息熵角度也可以对初始化问题形成直观理解。
鲁棒性
基于Softmax归一化的注意力机制,可以写为
\begin{equation}o = \frac{\sum\limits_{i=1}^n e^{s_i} v_i}{\sum\limits_{i=1}^n e^{s_i}}\end{equation}
有一天笔者突然想到一个问题:如果往$s_i$中加入独立同分布的噪声会怎样?
最近评论