“让Keras更酷一些!”:层中层与mask
By 苏剑林 | 2019-07-16 | 149991位读者 | 引用这一篇“让Keras更酷一些!”将和读者分享两部分内容:第一部分是“层中层”,顾名思义,是在Keras中自定义层的时候,重用已有的层,这将大大减少自定义层的代码量;另外一部分就是应读者所求,介绍一下序列模型中的mask原理和方法。
层中层
在《“让Keras更酷一些!”:精巧的层与花式的回调》一文中我们已经介绍过Keras自定义层的基本方法,其核心步骤是定义build
和call
两个函数,其中build
负责创建可训练的权重,而call
则定义具体的运算。
拒绝重复劳动
经常用到自定义层的读者可能会感觉到,在自定义层的时候我们经常在重复劳动,比如我们想要增加一个线性变换,那就要在build
中增加一个kernel
和bias
变量(还要自定义变量的初始化、正则化等),然后在call
里边用K.dot
来执行,有时候还需要考虑维度对齐的问题,步骤比较繁琐。但事实上,一个线性变换其实就是一个不加激活函数的Dense
层罢了,如果在自定义层时能重用已有的层,那显然就可以大大节省代码量了。
将“Softmax+交叉熵”推广到多标签分类问题
By 苏剑林 | 2020-04-25 | 347650位读者 | 引用(注:本文的相关内容已整理成论文《ZLPR: A Novel Loss for Multi-label Classification》,如需引用可以直接引用英文论文,谢谢。)
一般来说,在处理常规的多分类问题时,我们会在模型的最后用一个全连接层输出每个类的分数,然后用softmax激活并用交叉熵作为损失函数。在这篇文章里,我们尝试将“Softmax+交叉熵”方案推广到多标签分类场景,希望能得到用于多标签分类任务的、不需要特别调整类权重和阈值的loss。
单标签到多标签
一般来说,多分类问题指的就是单标签分类问题,即从$n$个候选类别中选$1$个目标类别。假设各个类的得分分别为$s_1,s_2,
\dots,s_n$,目标类为$t\in\{1,2,\dots,n\}$,那么所用的loss为
\begin{equation}-\log \frac{e^{s_t}}{\sum\limits_{i=1}^n e^{s_i}}= - s_t + \log \sum\limits_{i=1}^n e^{s_i}\label{eq:log-softmax}\end{equation}
这个loss的优化方向是让目标类的得分$s_t$变为$s_1,s_2,\dots,s_t$中的最大值。关于softmax的相关内容,还可以参考《寻求一个光滑的最大值函数》、《函数光滑化杂谈:不可导函数的可导逼近》等文章。
当GPT遇上中国象棋:写过文章解过题,要不再来下盘棋?
By 苏剑林 | 2020-11-11 | 54464位读者 | 引用不知道读者有没有看过量子位年初的文章《最强写作AI竟然学会象棋和作曲,语言模型跨界操作引热议,在线求战》,里边提到有网友用GPT2模型训练了一个下国际象棋的模型。笔者一直在想,这么有趣的事情怎么可以没有中文版呢?对于国际象棋来说,其中文版自然就是中国象棋了,于是我一直有想着把它的结果在中国象棋上面复现一下。拖了大半年,在最近几天终于把这个事情完成了,在此跟大家分享一下。
象棋谱式
将军不离九宫内,士止相随不出官。
象飞四方营四角,马行一步一尖冲。
炮须隔子打一子,车行直路任西东。
唯卒只能行一步,过河横进退无踪。
Transformer升级之路:3、从Performer到线性Attention
By 苏剑林 | 2021-04-22 | 56736位读者 | 引用看过笔者之前的文章《线性Attention的探索:Attention必须有个Softmax吗?》和《Performer:用随机投影将Attention的复杂度线性化》的读者,可能会觉得本文的标题有点不自然,因为是先有线性Attention然后才有Performer的,它们的关系为“Performer是线性Attention的一种实现,在保证线性复杂度的同时保持了对标准Attention的近似”,所以正常来说是“从线性Attention到Performer”才对。
然而,本文并不是打算梳理线性Attention的发展史,而是打算反过来思考Performer给线性Attention所带来的启示,所以是“从Performer到线性Attention”。
激活函数
线性Attention的常见形式是
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V})_i = \frac{\sum\limits_{j=1}^n \text{sim}(\boldsymbol{q}_i, \boldsymbol{k}_j)\boldsymbol{v}_j}{\sum\limits_{j=1}^n \text{sim}(\boldsymbol{q}_i, \boldsymbol{k}_j)} = \frac{\sum\limits_{j=1}^n \phi(\boldsymbol{q}_i)^{\top} \varphi(\boldsymbol{k}_j)\boldsymbol{v}_j}{\sum\limits_{j=1}^n \phi(\boldsymbol{q}_i)^{\top} \varphi(\boldsymbol{k}_j)}\end{equation}
中文任务还是SOTA吗?我们给SimCSE补充了一些实验
By 苏剑林 | 2021-04-26 | 234000位读者 | 引用今年年初,笔者受到BERT-flow的启发,构思了成为“BERT-whitening”的方法,并一度成为了语义相似度的新SOTA(参考《你可能不需要BERT-flow:一个线性变换媲美BERT-flow》,论文为《Whitening Sentence Representations for Better Semantics and Faster Retrieval》)。然而“好景不长”,在BERT-whitening提交到Arxiv的不久之后,Arxiv上出现了至少有两篇结果明显优于BERT-whitening的新论文。
第一篇是《Generating Datasets with Pretrained Language Models》,这篇借助模板从GPT2_XL中无监督地构造了数据对来训练相似度模型,个人认为虽然有一定的启发而且效果还可以,但是复现的成本和变数都太大。另一篇则是本文的主角《SimCSE: Simple Contrastive Learning of Sentence Embeddings》,它提出的SimCSE在英文数据上显著超过了BERT-flow和BERT-whitening,并且方法特别简单~
那么,SimCSE在中文上同样有效吗?能大幅提高中文语义相似度的效果吗?本文就来做些补充实验。
WGAN新方案:通过梯度归一化来实现L约束
By 苏剑林 | 2021-11-15 | 55582位读者 | 引用当前,WGAN主流的实现方式包括参数裁剪(Weight Clipping)、谱归一化(Spectral Normalization)、梯度惩罚(Gradient Penalty),本来则来介绍一种新的实现方案:梯度归一化(Gradient Normalization),该方案出自两篇有意思的论文,分别是《Gradient Normalization for Generative Adversarial Networks》和《GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial Networks》。
有意思在什么地方呢?从标题可以看到,这两篇论文应该是高度重合的,甚至应该是同一作者的。但事实上,这是两篇不同团队的、大致是同一时期的论文,一篇中了ICCV,一篇中了WACV,它们基于同样的假设推出了几乎一样的解决方案,内容重合度之高让我一直以为是同一篇论文。果然是巧合无处不在啊~
指数梯度下降 + 元学习 = 自适应学习率
By 苏剑林 | 2022-03-03 | 30824位读者 | 引用前两天刷到了Google的一篇论文《Step-size Adaptation Using Exponentiated Gradient Updates》,在其中学到了一些新的概念,所以在此记录分享一下。主要的内容有两个,一是非负优化的指数梯度下降,二是基于元学习思想的学习率调整算法,两者都颇有意思,有兴趣的读者也可以了解一下。
指数梯度下降
梯度下降大家可能听说得多了,指的是对于无约束函数$\mathcal{L}(\boldsymbol{\theta})$的最小化,我们用如下格式进行更新:
\begin{equation}\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta\nabla_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta}_t)\end{equation}
其中$\eta$是学习率。然而很多任务并非总是无约束的,对于最简单的非负约束,我们可以改为如下格式更新:
\begin{equation}\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t \odot \exp\left(- \eta\nabla_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta}_t)\right)\label{eq:egd}\end{equation}
这里的$\odot$是逐位对应相乘(Hadamard积)。容易看到,只要初始化的$\boldsymbol{\theta}_0$是非负的,那么在整个更新过程中$\boldsymbol{\theta}_t$都会保持非负,这就是用于非负约束优化的“指数梯度下降”。
生成扩散模型漫谈(二十一):中值定理加速ODE采样
By 苏剑林 | 2023-12-07 | 75718位读者 | 引用在生成扩散模型的发展史上,DDIM和同期Song Yang的扩散SDE都称得上是里程碑式的工作,因为它们建立起了扩散模型与随机微分方程(SDE)、常微分方程(ODE)这两个数学领域的紧密联系,从而允许我们可以利用SDE、ODE已有的各种数学工具来对分析、求解和拓展扩散模型,比如后续大量的加速采样工作都以此为基础,可以说这打开了生成扩散模型的一个全新视角。
本文我们聚焦于ODE。在本系列的(六)、(十二)、(十四)、(十五)、(十七)等博客中,我们已经推导过ODE与扩散模型的联系,本文则对扩散ODE的采样加速做简单介绍,并重点介绍一种巧妙地利用“中值定理”思想的新颖采样加速方案“AMED”。
欧拉方法
正如前面所说,我们已经有多篇文章推导过扩散模型与ODE的联系,所以这里不重复介绍,而是直接将扩散ODE的采样定义为如下ODE的求解:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt} = \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\label{eq:dm-ode}\end{equation}
最近评论