29 Aug

三角半分正方形

印象中我在初一曾从一个美术生好朋友那里学到了一个画椭圆的方法:选取一个矩形,取一组邻边的中点,连接并切除得到的三角形;在剩下的五边形中,继续取邻边中点,连接,切除,得到一个如下图的图形;然后作一个尽可能与下图AG、GH、HI、IJ相切的弧,这个弧就大概为四分之一的椭圆了。

椭圆的美术画法

椭圆的美术画法

点击阅读全文...

30 Sep

天宫一号成功发射!

昨晚九点十六分(据说准确时间是2011年9月29日21时16分03.507秒),天宫一号升空!

天宫一号发射

天宫一号发射

点击阅读全文...

23 Oct

2011年全国高中数学联赛

16日开考。我们15日出发,坐了将近五个小时的车到惠州(第八中学)参加考试。然而让我很无奈的是,虽然之前做了一定准备,这次考试发挥出奇的差,所以,拿奖只是个梦...^_^

后来才发现,我很悲剧地考了A卷,再看一下B卷的题目,发现那更合我胃口,更无语了...难道是运气在上一年用光了?

其实物理竞赛更适合我,只是那偏远的地方连资格都被忽略了...

不再说什么了,还是老老实实在科学空间与大家分享、讨论科学问题更开心。

下面附上今年的联赛题目:

点击阅读全文...

19 Nov

[欧拉数学]素数倒数之和

上一篇文章我通过欧拉数学的方式简单地讲了数论中的“黎曼ζ函数”和“金钥匙”。事实上,这把“金钥匙”与很多问题之间的联系已经被建立了起来,换句话说,“金钥匙”已经插入到了相应的“锁孔”中,数学家的工作就是要把这个金钥匙“拧动”,继而打开数学之门

接下来我们看看如何证明所有素数的倒数之和发散的。在入正题之前,我们得需要看一个引理

无限数列${a_n}$的每一项都大于0,那么$\sum\limits_{n=1}^{\infty} a_n$与$\prod\limits_{n=1}^{\infty} \left(1+a_n\right)$的敛散性相同。换句话说,两者互为充分必要条件!

点击阅读全文...

22 Jan

2012春节快乐!

BoJone祝全天下的人都开开心心一辈子!事事如意一生!

这是科学空间第三个年头了。BoJone愿与各位走过更多的日子!

加油!

招财童子2012

招财童子2012

12 Feb

2012北约自主招生数学

其中前六题是选择题,具体情况记不起来了,其实也是挺简单的。不过有兴趣的朋友可以在本文的PDF附件查阅到试题(来自“空念远兮”数学网站)。

对了这个PDF文件的参考答案之后,BoJone发现我的选择题全对。而后三道大题我只做了最后两道,解法也和PDF中的不大一样,在此写出来与大家讨论。

1、求证:内角相等的圆内接五边形是正五边形。

这道题是我在最后十五分钟做出来的。一开始想到很多复杂的定理方法,后来发现它可以很简单证明。

如图是一个满足题目条件的五边形。

五边形

五边形

点击阅读全文...

18 Mar

指数函数及其展开式孰大孰小?

在x>0时,指数函数$f(x)=e^x$与幂函数$h_n (x)=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}$孰大孰小?

对于已经学习了微积分的朋友来说,这道题目是很简单的,甚至$f(x) > h_n (x)$可以说是“显然成立的”(因为$e^x$展开式接下来的无穷项都是正数)。但是,这道题目出在了2012年的广州一模理科数学中,就显得不那么简单了,得用初等的方法来证明它。而笔者最近养成了一个习惯,拿到一张数学试卷,不是先做选择题,而是先做最后一题。所以在参加广州一模时,先花了半个小时把最后一题(即本题)解决了。下面是我想到的三种解法。

一、数学归纳法

点击阅读全文...

3 Apr

我19岁了

生日祝福

生日祝福

2012年3月28日,我19岁了。

三月是一个很美的月份,我的很多值得纪念的日子都在三月发生,还有好友们都在三月接二连三地生日,几乎让我措手不及了,呵呵。我的同桌黄金,好友家益,我的好妹妹凤儿还有我自己都在这个月成为十九岁的孩子了。算起来,我应该是“最年轻”的了^_^

3-25-聚餐合照

3-25-聚餐合照

我的生日收到了许多人的祝福,这让我觉得很意外,我一直觉得,我不善于人际交往,所以不应该会有太多人关注我,但惊喜在我身上发生了。谢谢大家。(除了凤儿之外,因为我们俩说过永远不互说谢谢)

人生如梦,繁星流动,和你同路,从不相识开始心接近,默默以真挚待人......这是《朋友》的歌词,也是我们之间的真实写照。感谢上天,让我的人生之路上有你们的相伴,人生因为你们而更加精彩。愿能够与你们一起度过、奋斗过更多的日子!我们相约,我们是一辈子的朋友!

点击阅读全文...