只要我们曾经拥有过——《萍聚》
By 苏剑林 | 2011-06-06 | 21793位读者 | 引用这首歌是凤儿介绍的,去年我们学校高一夏令营的“主题歌曲”。她说歌词写得很好,我感觉也挺不错的^_^
萍,指的是漂浮在水面上的一种藻类,风吹过来,它们就会在风的作用力下聚在一起。人好象是浮在水面上的荷叶,聚散不过都是风吹动所致,到处飘散而已。因此便有了“萍水相逢”这一成语,指的是无心的邂逅或偶然的相遇。“萍聚”亦然。
曾有宋词写道“风中柳絮水中萍,聚散两无情”,这便让我们倍感人生悲欢离合的无奈。在这个充斥着高考的离别的六月里,离愁味道更浓了。可是,不论如何,明天的事情与我们无关,我们要珍惜今天事,珍惜今天人,尽我所能把握好我所拥有的。正如——
Cherish someone special for you and let them know you cherish them.
这样,当我们真的面临无可奈何的离别时,也能够含泪而微笑地挥手,唱着“只要我们曾经拥有过...”。这就是《萍聚》的声音!
科学空间:2011年7月重要天象
By 苏剑林 | 2011-07-06 | 22950位读者 | 引用IMO42-1,我也会做几何题
By 苏剑林 | 2011-07-30 | 28405位读者 | 引用七月再次“农忙”,农村里要插秧了,播下种苗,等待再次收获的季节^_^
我一直觉得我的数学能力偏向于分析计算而不擅长于几何,纵使遇到几何问题,也是满脑子的解析几何做法,没有纯几何的美。而这几天为了加强数学竞赛题目的能力,我一直在看IMO的题目,并且企图独立做出一些题目,但都无果。我比较感兴趣的是不等式,我感觉一道简单的式子,不用太多的文字就可以讲清楚的题目非不等式莫属,但是IMO的不等式题实在高深,我还没有能够独立做出一道来(参考答案可以看懂,只是想不到思路),或许是我在努力追求统一的方法而不肯研究那些特定的技巧的原因吧。不料今天看了一下2001年IMO的几何题目,发现我可能将它做出来,于是研究了一会,最终很幸运地做了出来。虽然不是最简单的方法,但也与大家分享一下。
如图,O是锐角三角形ABC的外心,AP是三角形的垂线段,∠B-∠C不小于30°。证明∠BAC+∠BOP < 90°
有理直角三角形的面积能否为整数?
By 苏剑林 | 2011-08-21 | 37698位读者 | 引用这是一个古老而有趣的问题,但在引入这个问题之前,我们首先来看一个简单的问题:
整数边直角三角形的面积能否为一个完全平方数?
答案是不能。我们可以举一些例子来检验一下,例如边长为3,4,5的直角三角形面积为6,6不是一个平方数;再如边长为5,12,13的直角三角形面积为30,30也不是一个平方数...当然,数学的最近目的是要求严格证明,而不是简单举例,否则就只得称为不完全归纳,这样得出来的是一个猜想,而不是“定理”,就好象著名的“哥德巴赫猜想”...本文我们将试图证明这个命题。
我们稍后还会发现,这个问题和以下问题是等价的:
是否存在一个面积为1的三边长都是有理数的直角三角形?
更让人意外的是,这个问题也等价于方程$x^4+y^4=z^4$并没有整数解,换句话说,我们要证明n=4时的“费马大定理”!
2011年全国高中数学联赛
By 苏剑林 | 2011-10-23 | 35187位读者 | 引用[欧拉数学]素数倒数之和
By 苏剑林 | 2011-11-19 | 38036位读者 | 引用上一篇文章我通过欧拉数学的方式简单地讲了数论中的“黎曼ζ函数”和“金钥匙”。事实上,这把“金钥匙”与很多问题之间的联系已经被建立了起来,换句话说,“金钥匙”已经插入到了相应的“锁孔”中,数学家的工作就是要把这个金钥匙“拧动”,继而打开数学之门!
接下来我们看看如何证明所有素数的倒数之和发散的。在入正题之前,我们得需要看一个引理:
无限数列${a_n}$的每一项都大于0,那么$\sum\limits_{n=1}^{\infty} a_n$与$\prod\limits_{n=1}^{\infty} \left(1+a_n\right)$的敛散性相同。换句话说,两者互为充分必要条件!
最近评论