17 Aug

浅谈Transformer的初始化、参数化与标准化

前几天在训练一个新的Transformer模型的时候,发现怎么训都不收敛了。经过一番debug,发现是在做Self Attention的时候$\boldsymbol{Q}\boldsymbol{K}^{\top}$之后忘记除以$\sqrt{d}$了,于是重新温习了一下为什么除以$\sqrt{d}$如此重要的原因。当然,Google的T5确实是没有除以$\sqrt{d}$的,但它依然能够正常收敛,那是因为它在初始化策略上做了些调整,所以这个事情还跟初始化有关。

藉着这个机会,本文跟大家一起梳理一下模型的初始化、参数化和标准化等内容,相关讨论将主要以Transformer为心中展开。

采样分布

初始化自然是随机采样的的,所以这里先介绍一下常用的采样分布。一般情况下,我们都是从指定均值和方差的随机分布中进行采样来初始化。其中常用的随机分布有三个:正态分布(Normal)、均匀分布(Uniform)和截尾正态分布(Truncated Normal)。

点击阅读全文...

15 Nov

WGAN新方案:通过梯度归一化来实现L约束

当前,WGAN主流的实现方式包括参数裁剪(Weight Clipping)、谱归一化(Spectral Normalization)、梯度惩罚(Gradient Penalty),本来则来介绍一种新的实现方案:梯度归一化(Gradient Normalization),该方案出自两篇有意思的论文,分别是《Gradient Normalization for Generative Adversarial Networks》《GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial Networks》

有意思在什么地方呢?从标题可以看到,这两篇论文应该是高度重合的,甚至应该是同一作者的。但事实上,这是两篇不同团队的、大致是同一时期的论文,一篇中了ICCV,一篇中了WACV,它们基于同样的假设推出了几乎一样的解决方案,内容重合度之高让我一直以为是同一篇论文。果然是巧合无处不在啊~

点击阅读全文...

18 Jan

多任务学习漫谈(一):以损失之名

能提升模型性能的方法有很多,多任务学习(Multi-Task Learning)也是其中一种。简单来说,多任务学习是希望将多个相关的任务共同训练,希望不同任务之间能够相互补充和促进,从而获得单任务上更好的效果(准确率、鲁棒性等)。然而,多任务学习并不是所有任务堆起来就能生效那么简单,如何平衡每个任务的训练,使得各个任务都尽量获得有益的提升,依然是值得研究的课题。

最近,笔者机缘巧合之下,也进行了一些多任务学习的尝试,借机也学习了相关内容,在此挑部分结果与大家交流和讨论。

加权求和

从损失函数的层面看,多任务学习就是有多个损失函数$\mathcal{L}_1,\mathcal{L}_2,\cdots,\mathcal{L}_n$,一般情况下它们有大量的共享参数、少量的独立参数,而我们的目标是让每个损失函数都尽可能地小。为此,我们引入权重$\alpha_1,\alpha_2,\cdots,\alpha_n\geq 0$,通过加权求和的方式将它转化为如下损失函数的单任务学习
\begin{equation}\mathcal{L} = \sum_{i=1}^n \alpha_i \mathcal{L}_i\label{eq:w-loss}\end{equation}
在这个视角下,多任务学习的主要难点就是如何确定各个$\alpha_i$了。

点击阅读全文...

25 May

从重参数的角度看离散概率分布的构建

一般来说,神经网络的输出都是无约束的,也就是值域为$\mathbb{R}$,而为了得到有约束的输出,通常是采用加激活函数的方式。例如,如果我们想要输出一个概率分布来代表每个类别的概率,那么通常在最后加上Softmax作为激活函数。那么一个紧接着的疑问就是:除了Softmax,还有什么别的操作能生成一个概率分布吗?

《漫谈重参数:从正态分布到Gumbel Softmax》中,我们介绍了Softmax的重参数操作,本文将这个过程反过来,即先定义重参数操作,然后去反推对应的概率分布,从而得到一个理解概率分布构建的新视角。

问题定义

假设模型的输出向量为$\boldsymbol{\mu}=[\mu_1,\cdots,\mu_n]\in\mathbb{R}^n$,不失一般性,这里假设$\mu_i$两两不等。我们希望通过某个变换$\mathcal{T}$将$\boldsymbol{\mu}$转换为$n$元概率分布$\boldsymbol{p}=[p_1,\cdots,p_n]$,并保持一定的性质。比如,最基本的要求是:
\begin{equation}{\color{red}1.}\,p_i\geq 0 \qquad {\color{red}2.}\,\sum_i p_i = 1 \qquad {\color{red}3.}\,p_i \geq p_j \Leftrightarrow \mu_i \geq \mu_j\end{equation}

点击阅读全文...

28 Jun

“维度灾难”之Hubness现象浅析

这几天读到论文《Exploring and Exploiting Hubness Priors for High-Quality GAN Latent Sampling》,了解到了一个新的名词“Hubness现象”,说的是高维空间中的一种聚集效应,本质上是“维度灾难”的体现之一。论文借助Hubness的概念得到了一个提升GAN模型生成质量的方案,看起来还蛮有意思。所以笔者就顺便去学习了一下Hubness现象的相关内容,记录在此,供大家参考。

坍缩的球

“维度灾难”是一个很宽泛的概念,所有在高维空间中与相应的二维、三维空间版本出入很大的结论,都可以称之为“维度灾难”,比如《n维空间下两个随机向量的夹角分布》中介绍的“高维空间中任何两个向量几乎都是垂直的”。其中,有不少维度灾难现象有着同一个源头——“高维空间单位球与其外切正方体的体积之比逐渐坍缩至0”,包括本文的主题“Hubness现象”亦是如此。

点击阅读全文...

30 Nov

用热传导方程来指导自监督学习

用理论物理来卷机器学习已经不是什么新鲜事了,比如上个月介绍的《生成扩散模型漫谈(十三):从万有引力到扩散模型》就是经典一例。最近一篇新出的论文《Self-Supervised Learning based on Heat Equation》,顾名思义,用热传导方程来做(图像领域的)自监督学习,引起了笔者的兴趣。这种物理方程如何在机器学习中发挥作用?同样的思路能否迁移到NLP中?让我们一起来读读论文。

基本方程

如下图,左边是物理中热传导方程的解,右端则是CAM积分梯度等显著性方法得到的归因热力图,可以看到两者有一定的相似之处,于是作者认为热传导方程可以作为好的视觉特征的一个重要先验。

热方程的热力图(左)和视觉模型的热力图(右)

热方程的热力图(左)和视觉模型的热力图(右)

点击阅读全文...

17 Apr

梯度视角下的LoRA:简介、分析、猜测及推广

随着ChatGPT及其平替的火热,各种参数高效(Parameter-Efficient)的微调方法也“水涨船高”,其中最流行的方案之一就是本文的主角LoRA了,它出自论文《LoRA: Low-Rank Adaptation of Large Language Models》。LoRA方法上比较简单直接,而且也有不少现成实现,不管是理解还是使用都很容易上手,所以本身也没太多值得细写的地方了。

然而,直接实现LoRA需要修改网络结构,这略微麻烦了些,同时LoRA给笔者的感觉是很像之前的优化器AdaFactor,所以笔者的问题是:能否从优化器角度来分析和实现LoRA呢?本文就围绕此主题展开讨论。

方法简介

以往的一些结果(比如《Exploring Aniversal Intrinsic Task Subspace via Prompt Tuning》)显示,尽管预训练模型的参数量很大,但每个下游任务对应的本征维度(Intrinsic Dimension)并不大,换句话说,理论上我们可以微调非常小的参数量,就能在下游任务取得不错的效果。

LoRA借鉴了上述结果,提出对于预训练的参数矩阵$W_0\in\mathbb{R}^{n\times m}$,我们不去直接微调$W_0$,而是对增量做低秩分解假设:
\begin{equation}W = W_0 + A B,\qquad A\in\mathbb{R}^{n\times r},B\in\mathbb{R}^{r\times m}\end{equation}

点击阅读全文...

14 Mar

缓解交叉熵过度自信的一个简明方案

众所周知,分类问题的常规评估指标是正确率,而标准的损失函数则是交叉熵,交叉熵有着收敛快的优点,但它并非是正确率的光滑近似,这就带来了训练和预测的不一致性问题。另一方面,当训练样本的预测概率很低时,交叉熵会给出一个非常巨大的损失(趋于$-\log 0^{+}=\infty$),这意味着交叉熵会特别关注预测概率低的样本——哪怕这个样本可能是“脏数据”。所以,交叉熵训练出来的模型往往有过度自信现象,即每个样本都给出较高的预测概率,这会带来两个副作用:一是对脏数据的过度拟合带来的效果下降,二是预测的概率值无法作为不确定性的良好指标。

围绕交叉熵的改进,学术界一直都有持续输出,目前这方面的研究仍处于“八仙过海,各显神通”的状态,没有标准答案。在这篇文章中,我们来学习一下论文《Tailoring Language Generation Models under Total Variation Distance》给出的该问题的又一种简明的候选方案。

点击阅读全文...