高维空间的叉积及其几何意义
By 苏剑林 | 2013-12-26 | 58012位读者 | 引用向量之间的运算有点积和叉积(Cross Product,向量积、外积),其中点积是比较简单的,而且很容易推广到高维;但是叉积不同,一般来说它只不过是三维空间中的东西。叉积的难以推广在于它的多重含义性,如果将向量及其叉积放到张量里边来看(这属于微分形式的内容),那么三维以上的向量叉积是不存在的;但是如果只是把叉积看成是“由两个向量生成第三个与其正交的向量”的工具的话,那么叉积也是可以高维推广的,而且推广的技巧非常巧妙,与三维空间的叉积也非常相似。
回顾三维空间
为了推广三维空间的叉积,首先回顾三维空间的叉积来源是有益的。叉积起源于四元数乘法,但是从目的性来讲,我们希望构造一个向量$\boldsymbol{w}=(w_1,w_2,w_3)$,使得它与已知的两个不共线的向量$\boldsymbol{u}=(u_1,u_2,u_3),\boldsymbol{v}=(v_1,v_2,v_3)$垂直(正交)。从普适性的角度来讲,我们还希望构造出来的向量没有任何“奇点”,为此,我们只用乘法构造。至于叉积的几何意义,则是后话,毕竟,先达到基本的目的再说。
几何的数与数的几何:超复数的浅探究
By 苏剑林 | 2014-01-11 | 58598位读者 | 引用这也是我的期末论文之一...全文共17页,包括了四元数的构造方法,初等应用等。附录包括行列式与体积、三维旋转的描述等。使用LaTex进行写作(LaTex会让你爱上数学写作的)
几何的数与数的几何
――超复数的浅探究
摘要
今天,不论是数学还是物理的高维问题,都采用向量分析为基本工具,数学物理中难觅四元数的影子。然而在历史上,四元数的发展有着重要的意义。四元数(Quaternion)运算实际上是向量分析的“鼻祖”,向量点积和叉积的概念也首先出现在四元数的运算中,四元数的诞生还标记着非交换代数的开端。即使是现在,四元数还是计算机描述三维空间旋转问题最简单的工具。另外,作为复数的推广,四元数还为某些复数问题的一般化提供了思路。
本文把矩阵与几何适当地结合起来,利用矩阵行列式$\det (AB) =(\det A)(\det B)$这一性质得出了四元数以及更高维的超复数的生成规律,并讨论了它的一些性质以及它在描述旋转方面的应用。部分证明细节和不完善的思想放到了附录之中。
Project Euler 454 :五天攻下“擂台”
By 苏剑林 | 2014-06-27 | 28464位读者 | 引用进入期末了,很多同学都开始复习了,这学期我选的几门课到现在还不是很熟悉,本想也在趁着这段时间好好看看。偏生五天前我在浏览数学研发论坛的编程擂台时看到了这样的一道题目:
设对于给定的$L$,方程
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
满足$0 < x < y \leq L$的正整数解共有$f(L)$种情况。比如$f(6)=1,f(12)=3,f(1000)=1069$,求$f(10^{12})$。
这道题目的来源是Project Euler的第454题:Diophantine reciprocals III(丢潘图倒数方程),题目简短易懂,但又不失深度,正符合我对理想题目的定义。而且最近在学习Python学习得不亦乐乎,看到这道题目就跃跃欲试。于是乎,我的五天时间就没有了,而且过程中几乎耗尽了我现在懂的所有编程技巧。由于不断地测试运行,我的电脑发热量比平时大了几倍,真是辛苦了我的电脑。最后的代码,自我感觉已经是我目前写的最精彩的代码了。在此与大家共享和共勉~
上述表达式是分式,不利于编程,由于$n=\frac{xy}{x+y}$,于是上述题目也等价于求$(x+y)|xy$(意思是$x+y$整除$xy$)的整数解。
线性微分方程组:已知特解求通解
By 苏剑林 | 2014-06-18 | 37513位读者 | 引用含有$n$个一阶常微分方程的一阶常微分方程组
$$\dot{\boldsymbol{x}}=\boldsymbol{A}\boldsymbol{x}$$
其中$\boldsymbol{x}=(x_1(t),\dots,x_n(t))^{T}$为待求函数,而$\boldsymbol{A}=(a_{ij}(t))_{n\times n}$为已知的函数矩阵。现在已知该方程组的$n-1$个线性无关的特解$\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_{n-1}$(解的列向量),求方程的通解。
这是我的一位同学在6月5号问我的一道题目,我当时看了一下,感觉可以通过李对称的方法很容易把解构造出来,当晚就简单分析了一下,发现根据李对称的思想,由上面已知的信息确实足以把通解构造出来。但是我尝试了好几天,尝试了几何、代数等思想,都没有很好地构造出相应的正则变量出来,从而也没有写出它的显式解,于是就搁置下来了。今天再分析这道题目时,竟在无意之间构造出了让我比较满意的解来~
一本对称闯物理:相对论力学(一)
By 苏剑林 | 2014-03-19 | 30556位读者 | 引用简单说说
笔者最近陶醉于从李对称的角度来理解力学和场论,并且计算得到一些比较有趣的结果,遂想在此与大家分享。我发现,仅仅需要一个描述对称的无穷小生成元和一些最基本的假设,几乎就可以完成地推导出整个相对论力学来,甚至推导出整个(经典)场论理论来。这确实是不可思议的,我现在能基本体会到当年徐一鸿大师写的《可畏的对称》的含义了。对称的威力如此之大,以至于我们真的不得不敬畏它。而在构思本文题目的时候,我也曾想到过用“可畏的对称”为题,但不免有抄袭和老套之嫌。后来想到曾有一部漫画叫《一本漫画闯天涯》,遂将“漫画”改成“对称”,“天涯”改成“物理”,似乎也能表达我对“对称”的感觉。
对称就是在某种变换下保持不变的性质,比如狭义相对论要求所有物理定律在所有惯性系中保持不变,这相对于要求描述物理定律的方程在匀速运动的坐标变换下保持不变,结合光速不变的要求,我们就可以推导出洛伦兹变换,从而完成地描述了狭义相对论里边的对称。然而,并不是任何时候都可以想推导洛伦兹变换那样,能够把一个完整的变换推导出来的。幸好,李对称的不需要完整的对称描述,它只需要“无穷小变换”(意味着我们可以忽略掉高阶项),对应地产生一个“无穷小生成元”,用这个无穷小生成元,就足以完整构建出我们所需要的物理来。这种“无穷小”决定“广泛”、“局部”决定“全局”的奇妙至今仍让我觉得不可思议。(关于李对称、无穷小生成元的基本概念,不妨先阅读:《求解微分方程的李对称方法》)
一本对称闯物理:相对论力学(二)
By 苏剑林 | 2014-03-25 | 17999位读者 | 引用从这个系列的第一篇文章到本文,已经隔了好多天。其实本文的内容是跟第一篇的内容同时完成的,为什么这么久才更新呢?原因有二,其一是随着春天的到来人也开始懒起来了,颓废呀~;其二,我在思考着规范变换的问题。按照朗道《场论》的逻辑,发展完质点力学理论后,下一步就是发展场论,诸如电磁场、引力场等。但是场论中有个让我比较困惑的东西,即场论存在着“规范不变性”。按照一般观点,我们是将规范不变性看作是电磁场方程的一个结果,即推导出电磁场的方程后,“发现”它具有规范不变性。但是如果用本文的方法,即假定场有这种对称性,然后就可以构建出场方程了。可是,为什么场存在着规范不变性,我还未能思考清楚。据我阅读到的资料来看,这个不变性似乎跟广义不变性有关(电磁场也是,这似乎说明即使在平直时空的电磁场理论中也暗示了广义不变性?)。还有,似乎这个不变性需要在量子场论中才能得到比较满意的解释,可是这样的话,就离我还很远了。
好吧,我们还是先回到相对论力学的推导中。
“无”中生有
上一篇文章我们已经构建了相对论力学的无穷小生成元,并进行了延拓。我已经说过,仅需要无穷小的变换形式,就可以构建出完成的相对论力学定律出来(当然这需要一些比较“显然”的假设)。这是个几乎从“无”到有的过程,也是本文标题的含义所在。另一方面,这种从局部到整体的可能性,也给我们带来一些启示:假如方法是普适的,那么可以由此构造出我们需要的物理定律来,包括电磁场、引力场方程等。(当然,我离这个目标还有点远。)
写在前面:作为离散数学的实验作业,我选择了研究数独。经过测试发现,数独的自动推理还不算难,我把两种常规的推理思路转化为了计算机代码,并结合了随机性推导,得到了一个解题能力还不错的数独程序。事实上,本文的程序还可以进一步优化,以得到更高能力的数独程序(只需要整理一下代码,加上几个循环和判断即可),但是我实在太懒,没有动力继续弄下去了,就这样先和大家分享吧。最后,笔者认为本文的算法是更接近我们的思维的算法。
数独简介
历史
相传数独源起于拉丁方阵(Latin Square),1970年代在美国发展,改名为数字拼图(Number Place)、之后流传至日本并发扬光大,以数学智力游戏智力拼图游戏发表。在1984年一本游戏杂志《パズル通信ニコリ》正式把它命名为数独,意思是“在每一格只有一个数字”。后来一位前任香港高等法院的新西兰籍法官高乐德(Wayne Gould)在1997年3月到日本东京旅游时,无意中发现了。他首先在英国的《泰晤士报》上发表,不久其他报纸也发表,很快便风靡全英国,之后他用了6年时间编写了电脑程式,并将它放在网站上,使这个游戏很快在全世界流行。
台湾于2005年5月由“中国时报”首度引进, 且每日连载, 亦造成很大的回响。台湾数独发展协会(Taiwan Sudoku Association, 简称 TSA)亦为世界解谜联盟会员。香港是在2005年7月30日由AM730在创刊时引入数独。中国大陆是在2007年2月28日正式引入数独。北京晚报智力休闲数独俱乐部(数独联盟前身)在新闻大厦举行加入世界谜题联合会的颁证仪式,成为世界谜题联合会的39个成员之一。(引用自“中文维基百科”: http://zh.wikipedia.org/wiki/数独)
当概率遇上复变:解析概率
By 苏剑林 | 2014-04-25 | 28068位读者 | 引用每当看到数学的两个看似毫不相关的分支巧妙地联系了起来时,我总会为数学的神奇美丽惊叹不已。在很久以前,当我看到通过生成函数法把数论问题与复变函数方法结合起来,衍生出一门奇妙的“解析数论”时,我就惊叹过生成函数法的漂亮!可惜,一直都没有好好写整理这些内容。今天,当我在看李政道先生的《物理学中的数学方法》时,看到他把复变函数跟随机游动如鬼斧神工般了起来,再次让我拍案叫绝。最后实在压抑不住心中的激动,在此写写概率论和生成函数的事情。
数论与复变函数结合,就生成了一门“解析数论”,按照这个说法,概率与复变函数结合,应该就会有一门“解析概率”,但是我在网上搜索的时候,并没有发现这个名词的存在。经过如此,本文还是试用了这个名词。虽然这个名词没有流行,但事实上,解析概率的方法并不算新,它可以追溯到伟大的数学家拉普拉斯以及他的著作《分析概率论》中。尽管如此,这种巧妙漂亮的方法似乎没有得到大家应该有的充分的认识。
我觉得,即使作为一个简洁的计算工具,生成函数法这个美丽的技巧,也应该尽可能为科学爱好者所知,更不用说数学专业的朋友了。
最近评论