“闭门造车”之多模态思路浅谈(一):无损输入
By 苏剑林 | 2024-02-21 | 140225位读者 | 引用这篇文章分享一下笔者关于多模态模型架构的一些闭门造车的想法,或者说一些猜测。
最近Google的Gemini 1.5和OpenAI的Sora再次点燃了不少人对多模态的热情,只言片语的技术报告也引起了大家对其背后模型架构的热烈猜测。不过,本文并非是为了凑这个热闹才发出来的,事实上其中的一些思考由来已久,最近才勉强捋顺了一下,遂想写出来跟大家交流一波,刚好碰上了两者的发布。
事先声明,“闭门造车”一词并非自谦,笔者的大模型实践本就“乏善可陈”,而多模态实践更是几乎“一片空白”,本文确实只是根据以往文本生成和图像生成的一些经验所做的“主观臆测”。
问题背景
首先简化一下问题,本文所讨论的多模态,主要指图文混合的双模态,即输入和输出都可以是图文。可能有不少读者的第一感觉是:多模态模型难道不也是烧钱堆显卡,Transformer“一把梭”,最终“大力出奇迹”吗?
欲对接广义相对论,新量子引力模型能否成功?
By 苏剑林 | 2009-09-05 | 16955位读者 | 引用时至目前为止,理论物理上最深奥的问题之一,就是调和广义相对论与量子力学,而一个令物理学家们无比兴奋的,同时也争论不休的量子引力新模型,是否能重新书写物理学理论?针对不久前诞生于美国劳伦斯伯克利实验室的“霍扎瓦模型”,美国得克萨斯A&M大学科学家对其进一步研究后得出中肯的结论,并将结果与值得商榷的内容发表于8月24日出版的《物理评论快报》杂志。
量子引力的新曙光
量子引力主要就是尝试将量子力学与广义相对论合并在一起,描述对重力场进行量子化,属于万有理论之一隅。但应该如何结合,又如何让二者在微观长度等级下维持正确性,以及任何候选的量子引力论又能提供什么样可证实的预测,这是当前的物理学悬而未决的问题。遗憾的是,量子引力所探讨的能量与尺度,乃是此前实验室条件下无法观测得到的,尽管可能,且可以透过天文观测来检验,但仍属少数特例,关于量子引力理论发展上的提示一直未能成功。
两生物种群竞争模型:LaTeX+Python
By 苏剑林 | 2014-12-15 | 58294位读者 | 引用写在前面:本文是笔者数学建模课的作业,探讨了两生物种群竞争的常微分方程组模型的解的性质,展示了微分方程定性理论的基本思想。当然,本文最重要的目的,是展示LaTeX与Python的完美结合。(本文的图均由Python的Matplotlib模块生成;而文档则采用LaTeX编辑。)
问题提出
研究在同一个自然环境中生存的两个种群之间的竞争关系。假设两个种群独自在这个自然环境中生存时数量演变都服从Logistic规律,又假设当它们相互竞争时都会减慢对方数量的增长,增长速度的减小都与它们数量的乘积成正比。按照这样的假设建立的常微分方程模型为
$$\begin{equation}\label{eq:jingzhengfangcheng}\left\{\begin{aligned}\frac{dx_1}{dt}=r_1 x_1\left(1-\frac{x_1}{N_1}\right)-a_1 x_1 x_2 \\
\frac{dx_2}{dt}=r_2 x_2\left(1-\frac{x_2}{N_2}\right)-a_2 x_1 x_2\end{aligned}\right.\end{equation}$$
本文分别通过定量和定性两个角度来分析该方程的性质。
文本情感分类(一):传统模型
By 苏剑林 | 2015-06-22 | 222685位读者 | 引用前言:四五月份的时候,我参加了两个数据挖掘相关的竞赛,分别是物电学院举办的“亮剑杯”,以及第三届 “泰迪杯”全国大学生数据挖掘竞赛。很碰巧的是,两个比赛中,都有一题主要涉及到中文情感分类工作。在做“亮剑杯”的时候,由于我还是初涉,水平有限,仅仅是基于传统的思路实现了一个简单的文本情感分类模型。而在后续的“泰迪杯”中,由于学习的深入,我已经基本了解深度学习的思想,并且用深度学习的算法实现了文本情感分类模型。因此,我打算将两个不同的模型都放到博客中,供读者参考。刚入门的读者,可以从中比较两者的不同,并且了解相关思路。高手请一笑置之。
基于情感词典
漫话模型|模型与选芒果
By 苏剑林 | 2015-07-15 | 37612位读者 | 引用很多人觉得“模型”、“大数据”、“机器学习”这些字眼很高大很神秘,事实上,它跟我们生活中选水果差不了多少。本文用了几千字,来试图教会大家怎么选芒果...
模型的比喻
假如我要从一批芒果中,找出好吃的那个来。而我不能直接切开芒果尝尝,所以我只能观察芒果,能观察到的量有颜色、表面的气味、大小等等,这些就是我们能够收集到的信息(特征)。
生活中还要很多这样的例子,比如买火柴(可能年轻的城里人还没见过火柴?),如何判断一盒火柴的质量?难道要每根火柴都划划,看看着不着火?显然不行,我们最多也只能划几根,全部划了,火柴也不成火柴了。当然,我们还能看看火柴的样子,闻闻火柴的气味,这些动作是可以接受的。
文本情感分类(二):深度学习模型
By 苏剑林 | 2015-08-04 | 601885位读者 | 引用“熵”不起:从熵、最大熵原理到最大熵模型(一)
By 苏剑林 | 2015-12-01 | 81040位读者 | 引用熵的概念
作为一名物理爱好者,我一直对统计力学中“熵”这个概念感到神秘和好奇。因此,当我接触数据科学的时候,我也对最大熵模型产生了浓厚的兴趣。
熵是什么?在通俗的介绍中,熵一般有两种解释:(1)熵是不确定性的度量;(2)熵是信息的度量。看上去说的不是一回事,其实它们说的就是同一个意思。首先,熵是不确定性的度量,它衡量着我们对某个事物的“无知程度”。熵为什么又是信息的度量呢?既然熵代表了我们对事物的无知,那么当我们从“无知”到“完全认识”这个过程中,就会获得一定的信息量,我们开始越无知,那么到达“完全认识”时,获得的信息量就越大,因此,作为不确定性的度量的熵,也可以看作是信息的度量,说准确点,是我们能从中获得的最大的信息量。
“熵”不起:从熵、最大熵原理到最大熵模型(二)
By 苏剑林 | 2015-12-11 | 82943位读者 | 引用上集回顾
在第一篇中,笔者介绍了“熵”这个概念,以及它的一些来龙去脉。熵的公式为
$$S=-\sum_x p(x)\log p(x)\tag{1}$$
或
$$S=-\int p(x)\log p(x) dx\tag{2}$$
并且在第一篇中,我们知道熵既代表了不确定性,又代表了信息量,事实上它们是同一个概念。
说完了熵这个概念,接下来要说的是“最大熵原理”。最大熵原理告诉我们,当我们想要得到一个随机事件的概率分布时,如果没有足够的信息能够完全确定这个概率分布(可能是不能确定什么分布,也可能是知道分布的类型,但是还有若干个参数没确定),那么最为“保险”的方案是选择使得熵最大的分布。
最大熵原理
承认我们的无知
很多文章在介绍最大熵原理的时候,会引用一句著名的句子——“不要把鸡蛋放在同一个篮子里”——来通俗地解释这个原理。然而,笔者窃以为这句话并没有抓住要点,并不能很好地体现最大熵原理的要义。笔者认为,对最大熵原理更恰当的解释是:承认我们的无知!
最近评论