12 Jul

众所周知,LoRA是一种常见的参数高效的微调方法,我们在《梯度视角下的LoRA:简介、分析、猜测及推广》做过简单介绍。LoRA利用低秩分解来降低微调参数量,节省微调显存,同时训练好的权重可以合并到原始权重上,推理架构不需要作出改变,是一种训练和推理都比较友好的微调方案。此外,我们在《配置不同的学习率,LoRA还能再涨一点?》还讨论过LoRA的不对称性,指出给$A,B$设置不同的学习率能取得更好的效果,该结论被称为“LoRA+”。

为了进一步提升效果,研究人员还提出了不少其他LoRA变体,如AdaLoRArsLoRADoRAPiSSA等,这些改动都有一定道理,但没有特别让人深刻的地方觉。然而,前两天的《LoRA-GA: Low-Rank Adaptation with Gradient Approximation》,却让笔者眼前一亮,仅扫了摘要就有种必然有效的感觉,仔细阅读后更觉得它是至今最精彩的LoRA改进。

究竟怎么个精彩法?LoRA-GA的实际含金量如何?我们一起来学习一下。

点击阅读全文...

24 Jul

Monarch矩阵:计算高效的稀疏型矩阵分解

在矩阵压缩这个问题上,我们通常有两个策略可以选择,分别是低秩化稀疏化。低秩化通过寻找矩阵的低秩近似来减少矩阵尺寸,而稀疏化则是通过减少矩阵中的非零元素来降低矩阵的复杂性。如果说SVD是奔着矩阵的低秩近似去的,那么相应地寻找矩阵稀疏近似的算法又是什么呢?

接下来我们要学习的是论文《Monarch: Expressive Structured Matrices for Efficient and Accurate Training》,它为上述问题给出了一个答案——“Monarch矩阵”,这是一簇能够分解为若干置换矩阵与稀疏矩阵乘积的矩阵,同时具备计算高效且表达能力强的特点,论文还讨论了如何求一般矩阵的Monarch近似,以及利用Monarch矩阵参数化LLM来提高LLM速度等内容。

Monarch矩阵形式M=PLPR

Monarch矩阵形式M=PLPR

值得指出的是,该论文的作者也正是著名的Flash Attention的作者Tri Dao,其工作几乎都在致力于改进LLM的性能,这篇Monarch也是他主页上特意展示的几篇论文之一,单从这一点看就非常值得学习一番。

点击阅读全文...

6 Aug

通向最优分布之路:概率空间的最小化

当要求函数的最小值时,我们通常会先求导函数然后寻找其零点,比较幸运的情况下,这些零点之一正好是原函数的最小值点。如果是向量函数,则将导数改为梯度并求其零点。当梯度零点不易求得时,我们可以使用梯度下降来逐渐逼近最小值点。

以上这些都是无约束优化的基础结果,相信不少读者都有所了解。然而,本文的主题是概率空间中的优化,即目标函数的输入是一个概率分布,这类目标的优化更为复杂,因为它的搜索空间不再是无约束的,如果我们依旧去求解梯度零点或者执行梯度下降,所得结果未必能保证是一个概率分布。因此,我们需要寻找一种新的分析和计算方法,以确保优化结果能够符合概率分布的特性。

对此,笔者一直以来也感到颇为头疼,所以近来决定”痛定思痛“,针对概率分布的优化问题系统学习了一番,最后将学习所得整理在此,供大家参考。

点击阅读全文...

29 Jul

前两周笔者写了《对齐全量微调!这是我看过最精彩的LoRA(一)》(当时还没有编号“一”),里边介绍了一个名为“LoRA-GA”的LoRA变体,它通过梯度SVD来改进LoRA的初始化,从而实现LoRA与全量微调的对齐。当然,从理论上来讲,这样做也只能尽量对齐第一步更新后的$W_1$,所以当时就有读者提出了“后面的$W_2,W_3,\cdots$不管了吗?”的疑问,当时笔者也没想太深入,就单纯觉得对齐了第一步后,后面的优化也会严格一条较优的轨迹走。

有趣的是,LoRA-GA才出来没多久,arXiv上就新出了《LoRA-Pro: Are Low-Rank Adapters Properly Optimized?》,其所提的LoRA-Pro正好能回答这个问题!LoRA-Pro同样是想着对齐全量微调,但它对齐的是每一步梯度,从而对齐整条优化轨迹,这正好是跟LoRA-GA互补的改进点。

对齐全量

本文接着上一篇文章的记号和内容进行讲述,所以这里仅对上一节的内容做一个简单回顾,不再详细重复介绍。LoRA的参数化方式是
\begin{equation}W = (W_0 - A_0 B_0) + AB\end{equation}

点击阅读全文...

19 Sep

Softmax后传:寻找Top-K的光滑近似

Softmax,顾名思义是“soft的max”,是$\max$算子(准确来说是$\text{argmax}$)的光滑近似,它通过指数归一化将任意向量$\boldsymbol{x}\in\mathbb{R}^n$转化为分量非负且和为1的新向量,并允许我们通过温度参数来调节它与$\text{argmax}$(的one hot形式)的近似程度。除了指数归一化外,我们此前在《通向概率分布之路:盘点Softmax及其替代品》也介绍过其他一些能实现相同效果的方案。

我们知道,最大值通常又称Top-1,它的光滑近似方案看起来已经相当成熟,那读者有没有思考过,一般的Top-$k$的光滑近似又是怎么样的呢?下面让我们一起来探讨一下这个问题。

问题描述

设向量$\boldsymbol{x}=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$,简单起见我们假设它们两两不相等,即$i\neq j \Leftrightarrow x_i\neq x_j$。记$\Omega_k(\boldsymbol{x})$为$\boldsymbol{x}$最大的$k$个分量的下标集合,即$|\Omega_k(\boldsymbol{x})|=k$以及$\forall i\in \Omega_k(\boldsymbol{x}), j \not\in \Omega_k(\boldsymbol{x})\Rightarrow x_i > x_j$。我们定义Top-$k$算子$\mathcal{T}_k$为$\mathbb{R}^n\mapsto\{0,1\}^n$的映射:
\begin{equation}
[\mathcal{T}_k(\boldsymbol{x})]_i = \left\{\begin{aligned}1,\,\, i\in \Omega_k(\boldsymbol{x}) \\ 0,\,\, i \not\in \Omega_k(\boldsymbol{x})\end{aligned}\right.
\end{equation}
说白了,如果$x_i$属于最大的$k$个元素之一,那么对应的位置变成1,否则变成0,最终结果是一个Multi-Hot向量,比如$\mathcal{T}_2([3,2,1,4]) = [1,0,0,1]$。

点击阅读全文...

1 Sep

Decoder-only的LLM为什么需要位置编码?

众所周知,目前主流的LLM,都是基于Causal Attention的Decoder-only模型(对此我们在《为什么现在的LLM都是Decoder-only的架构?》也有过相关讨论),而对于Causal Attention,已经有不少工作表明它不需要额外的位置编码(简称NoPE)就可以取得非平凡的结果。然而,事实是主流的Decoder-only LLM都还是加上了额外的位置编码,比如RoPE、ALIBI等。

那么问题就来了:明明说了不加位置编码也可以,为什么主流的LLM反而都加上了呢?不是说“多一事不如少一事”吗?这篇文章我们从三个角度给出笔者的看法:

1、位置编码对于Attention的作用是什么?

2、NoPE的Causal Attention是怎么实现位置编码的?

3、NoPE实现的位置编码有什么不足?

点击阅读全文...

24 Oct

VQ的旋转技巧:梯度直通估计的一般推广

随着多模态LLM的方兴未艾,VQ(Vector Quantization)的地位也“水涨船高”,它可以作为视觉乃至任意模态的Tokenizer,将多模态数据统一到自回归生成框架中。遗憾的是,自VQ-VAE首次提出VQ以来,其理论并没有显著进步,像编码表的坍缩或利用率低等问题至今仍亟待解决,取而代之的是FSQ等替代方案被提出,成为了VQ有力的“竞争对手”。

然而,FSQ并不能在任何场景下都替代VQ,所以VQ本身的改进依然是有价值的。近日笔者读到了《Restructuring Vector Quantization with the Rotation Trick》,它提出了一种旋转技巧,声称能改善VQ的一系列问题,本文就让我们一起来品鉴一下。

回顾

早在五年前的博文《VQ-VAE的简明介绍:量子化自编码器》中我们就介绍过了VQ-VAE,后来在《简单得令人尴尬的FSQ:“四舍五入”超越了VQ-VAE》介绍FSQ的时候,也再次仔细地温习了VQ-VAE,还不了解的读者可以先阅读这两篇文章。

点击阅读全文...

29 Nov

从Hessian近似看自适应学习率优化器

这几天在重温去年的Meta的一篇论文《A Theory on Adam Instability in Large-Scale Machine Learning》,里边给出了看待Adam等自适应学习率优化器的新视角:它指出梯度平方的滑动平均某种程度上近似于在估计Hessian矩阵的平方,从而Adam、RMSprop等优化器实际上近似于二阶的Newton法。

这个角度颇为新颖,而且表面上跟以往的一些Hessian近似有明显的差异,因此值得我们去学习和思考一番。

牛顿下降

设损失函数为$\mathcal{L}(\boldsymbol{\theta})$,其中待优化参数为$\boldsymbol{\theta}$,我们的优化目标是
\begin{equation}\boldsymbol{\theta}^* = \mathop{\text{argmin}}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})\label{eq:loss}\end{equation}
假设$\boldsymbol{\theta}$的当前值是$\boldsymbol{\theta}_t$,Newton法通过将损失函数展开到二阶来寻求$\boldsymbol{\theta}_{t+1}$:
\begin{equation}\mathcal{L}(\boldsymbol{\theta})\approx \mathcal{L}(\boldsymbol{\theta}_t) + \boldsymbol{g}_t^{\top}(\boldsymbol{\theta} - \boldsymbol{\theta}_t) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_t)^{\top}\boldsymbol{\mathcal{H}}_t(\boldsymbol{\theta} - \boldsymbol{\theta}_t)\end{equation}

点击阅读全文...