7 Dec

在生成扩散模型的发展史上,DDIM和同期Song Yang的扩散SDE都称得上是里程碑式的工作,因为它们建立起了扩散模型与随机微分方程(SDE)、常微分方程(ODE)这两个数学领域的紧密联系,从而允许我们可以利用SDE、ODE已有的各种数学工具来对分析、求解和拓展扩散模型,比如后续大量的加速采样工作都以此为基础,可以说这打开了生成扩散模型的一个全新视角。

本文我们聚焦于ODE。在本系列的(六)(十二)(十四)(十五)(十七)等博客中,我们已经推导过ODE与扩散模型的联系,本文则对扩散ODE的采样加速做简单介绍,并重点介绍一种巧妙地利用“中值定理”思想的新颖采样加速方案“AMED”。

欧拉方法

正如前面所说,我们已经有多篇文章推导过扩散模型与ODE的联系,所以这里不重复介绍,而是直接将扩散ODE的采样定义为如下ODE的求解:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt} = \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\label{eq:dm-ode}\end{equation}

点击阅读全文...

17 Apr

上一篇文章《生成扩散模型漫谈(二十二):信噪比与大图生成(上)》中,我们介绍了通过对齐低分辨率的信噪比来改进noise schedule,从而改善直接在像素空间训练的高分辨率图像生成(大图生成)的扩散模型效果。而这篇文章的主角同样是信噪比和大图生成,但做到了更加让人惊叹的事情——直接将训练好低分辨率图像的扩散模型用于高分辨率图像生成,不用额外的训练,并且效果和推理成本都媲美直接训练的大图模型!

这个工作出自最近的论文《Upsample Guidance: Scale Up Diffusion Models without Training》,它巧妙地将低分辨率模型上采样作为引导信号,并结合了CNN对纹理细节的平移不变性,成功实现了免训练高分辨率图像生成。

思想探讨

我们知道,扩散模型的训练目标是去噪(Denoise,也是DDPM的第一个D)。按我们的直觉,去噪这个任务应该是分辨率无关的,换句话说,理想情况下低分辨率图像训练的去噪模型应该也能用于高分辨率图像去噪,从而低分辨率的扩散模型应该也能直接用于高分辨率图像生成。

点击阅读全文...

23 Apr

如何减少采样步数同时保证生成质量,是扩散模型应用层面的一个关键问题。其中,《生成扩散模型漫谈(四):DDIM = 高观点DDPM》介绍的DDIM可谓是加速采样的第一次尝试。后来,《生成扩散模型漫谈(五):一般框架之SDE篇》《生成扩散模型漫谈(五):一般框架之ODE篇》等所介绍的工作将扩散模型与SDE、ODE联系了起来,于是相应的数值积分技术也被直接用于扩散模型的采样加速,其中又以相对简单的ODE加速技术最为丰富,我们在《生成扩散模型漫谈(二十一):中值定理加速ODE采样》也介绍过一例。

这篇文章我们介绍另一个特别简单有效的加速技巧——Skip Tuning,出自论文《The Surprising Effectiveness of Skip-Tuning in Diffusion Sampling》,准确来说它是配合已有的加速技巧使用,来一步提高采样质量,这就意味着在保持相同采样质量的情况下,它可以进一步压缩采样步数,从而实现加速。

点击阅读全文...

1 May

今天我们分享一下论文《Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation》,顾名思义,这是一篇探讨如何更快更好地蒸馏扩散模型的新论文。

即便没有做过蒸馏,大家应该也能猜到蒸馏的常规步骤:随机采样大量输入,然后用扩散模型生成相应结果作为输出,用这些输入输出作为训练数据对,来监督训练一个新模型。然而,众所周知作为教师的原始扩散模型通常需要多步(比如1000步)迭代才能生成高质量输出,所以且不论中间训练细节如何,该方案的一个显著缺点是生成训练数据太费时费力。此外,蒸馏之后的学生模型通常或多或少都有效果损失。

有没有方法能一次性解决这两个缺点呢?这就是上述论文试图要解决的问题。

点击阅读全文...

22 Nov

继续回到我们的扩散系列。在《生成扩散模型漫谈(二十五):基于恒等式的蒸馏(上)》中,我们介绍了SiD(Score identity Distillation),这是一种不需要真实数据、也不需要从教师模型采样的扩散模型蒸馏方案,其形式类似GAN,但有着比GAN更好的训练稳定性。

SiD的核心是通过恒等变换来为学生模型构建更好的损失函数,这一点是开创性的,同时也遗留了一些问题。比如,SiD对损失函数的恒等变换是不完全的,如果完全变换会如何?如何从理论上解释SiD引入的$\lambda$的必要性?上个月放出的《Flow Generator Matching》(简称FGM)成功从更本质的梯度角度解释了$\lambda=0.5$的选择,而受到FGM启发,笔者则进一步发现了$\lambda = 1$的一种解释。

接下来我们将详细介绍SiD的上述理论进展。

点击阅读全文...

14 Feb

高斯型积分的微扰展开(一)

前段时间在研究费曼的路径积分理论,看到路径积分的微扰方法,也就是通过小参数展开的方式逐步逼近传播子。这样的技巧具有非常清晰的物理意义,有兴趣了解路径积分以及量子力学的读者,请去阅读费曼的《量子力学与路径积分》。然而从数学角度看来,这种逼近的技巧实际上非常粗糙,收敛范围和速度难以得到保证。事实上,数学上发展了各种各样的摄动技巧,来应对不同情况的微扰。下面我们研究积分
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\tag{1}$$
或者更一般地
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon V(x)} dx\tag{2}$$
路径积分的级数展开比它稍微复杂一些,但是仍然是类似的形式。

点击阅读全文...

15 Feb

积分估计的极值原理——变分原理的初级版本

如果一直关注科学空间的朋友会发现,笔者一直对极值原理有偏爱。比如,之前曾经写过一系列《自然极值》的文章,介绍一些极值问题和变分法;在物理学中,笔者偏爱最小作用量原理的形式;在数据挖掘中,笔者也因此对基于最大熵原理的最大熵模型有浓厚的兴趣;最近,在做《量子力学与路径积分》的习题中,笔者也对第十一章所说的变分原理产生了很大的兴趣。

对于一样新东西,笔者的学习方法是以一个尽可能简单的例子搞清楚它的原理和思想,然后再逐步复杂化,这样子我就不至于迷失了。对于变分原理,它是估算路径积分的一个很强大的方法,路径积分是泛函积分,或者说,无穷维积分,那么很自然想到,对于有限维的积分估计,比如最简单的一维积分,有没有类似的估算原理呢?事实上是有的,它并不复杂,弄懂它有助于了解变分原理的核心思想。很遗憾,我并没有找到已有的资料描述这个简化版的原理,可能跟我找的资料比较少有关。

从高斯型积分出发

变分原理本质上是Jensen不等式的应用。我们从下述积分出发
$$\begin{equation}\label{jifen}I(\epsilon)=\int_{-\infty}^{\infty}e^{-x^2-\epsilon x^4}dx\end{equation}$$

点击阅读全文...

9 Jun

路径积分系列:4.随机微分方程

本章将路径积分用于随机微分方程,并且得到了与不对称随机游走一样的结果,从而证明了它与该模型的等价性.

将路径积分用于随机微分方程的研究,这一思路由来已久. 费曼在他的著作[5]中,已经建立了路径积分与线性随机微分方程的关系. 而对于非线性的情况,也有不少研究,但比较混乱,如文献[8]甚至给出了错误的结果.

本文从路径积分的离散化概念出发,明确地建立了两个路径积分微元的雅可比行列式关系,从而对非线性随机微分方程也建立了路径积分. 本文的结果跟文献[9]的结果是一致的.

概念

本文所研究的仅仅是随机常微分方程,它与一般的常微分方程的区别在于布朗运动项的引入,如常见的一类随机微分方程为
$$dx(t)=p(x(t),t)dt + \sqrt{\alpha} dW_t.\tag{48}$$
其中$W_t$代表着一个标准的布朗运动. 由于引入了随机项,所以解$x(t)$不再是确定的,而是有一定的概率分布.

在对随机微分方程中,感兴趣的量有很多,比如关于$x$的某个量的期望、方差,或者稳定性,等等. 随机微分方程领域中有各种分析的技巧,但是显然,直接求出$x(t)$的概率分布后对概率分布进行研究,是最理想最容易的方案. 路径积分正是给出了求概率分布的一个方法.

点击阅读全文...