20 Jun

《虚拟的实在(3)》——相对论动力学

半个多月没有写文章了,一是因为接近期末考了,比较忙,当然最主要的原因还是人变懒了,呵呵,别人是忙里偷闲,我是闲里偷懒了。

这篇文章主要跟大家分享一下相对论动力学的知识。我们之前已经接触过相对论的坐标变换了,接下来的任务应该是把经典力学的动力学定律改成为相对论版本的,这显然也是学习场论的必经之路——懂得如何构造力学定律的相对版版本,是懂得构造相对论性场的基础。和朗道的《力学》与《场论》一样,我们的主线就是“最小作用量原理”。让我们回忆一下,在经典力学中,一个自由粒子的作用量是

$$S_m=\int Ldt=\int \frac{1}{2} m v^2dt$$

点击阅读全文...

5 Jul

齐次对称多项式初等表示的新尝试

这是我的这学期高等代数课的一个小论文。说到这里,其实我挺喜欢那些不用考试,通过平时考核以及写论文、报告或者做实验的方式来评成绩的方式,毕竟我觉得这才是比较综合地体现了知识和技能的水平(当然更重要的一个原因是我比较喜欢写作啦~~)。我们高等代数有两门课程,一是基本的上课,二是研讨课,分别考核。老师照顾我们,研讨课不用考试,写小论文就行了。Yeah~~

我写的是有关对称多项式的。其实这文章在半个学期之前就酝酿着了,当时刚学到对称多项式的初等表示。所谓初等表示,就是将一个多元对称多项式表示为$\sigma_1,\sigma_2,\sigma_3,...$的组合。其中
$$\begin{aligned}\sigma_1=x_1+x_2+...+x_n \\ \sigma_2=x_1 x_2+x_1 x_3+...+x_1 x_n+x_2 x_3+...+x_{n-1} x_n \\ ... \\ \sigma_n=x_1 x_2 ... x_n\end{aligned}$$
书本上给出了待定系数法,但是每次都要求解方程组,让我甚是烦恼,所以我研究直接展开的方案,最终得出了两种方法。当时也刚好接触着张量的知识,了解到“爱因斯坦求和约定”,于是想充分发挥其威力,就促成了这篇文章。其实我自定义了“方括弧”和“圆括弧”两种运算,都是符号上的简化。两种方法在某种意义上相互补充,笔者自感颇为满意,遂与大家分享。具体内容就不贴出来了,请大家下载pdf文件观看吧。

点击阅读全文...

25 Jul

【翻译】星空之夜:夏季恒星的色彩

笔录:在假期基本上是没有什么机会接触到英语的,平时看的数学物理书一般都是中文版的,因为现在学得还很浅,很少会有非找英语资料不可的时候。不过英语的重要性不言而喻,因此多练习一下还是必须的。突然想起很久没有翻译过文章了,就到《科学美国人》杂志上找了一篇有关夏季星空的小短文来练练笔。在此献丑了。

这个夏天的星空之夜,观星爱好者可以看到恒星发出彩虹般的色彩。
By Joe Rao and SPACE.com

点击阅读全文...

30 Jul

变分法的一个技巧及其“误用”

不可否认,变分法是非常有用而绝妙的一个数学工具,它“自动地”为我们在众多函数中选出了最优的一个,而免除了具体的分析过程。物理中的最小作用量原理则让变分法有了巨大的用武之地,并反过来也推动了变分法的发展。但是变分法的一个很明显的特点就是在大多数情况下计算相当复杂,甚至如果“蛮干”的话我们几乎连微分方程组都列不出来。因此,一些有用的技巧是很受欢迎的。本文就打算介绍这样的一个小技巧,来让某些变分问题得到一定的化简。

我是怎么得到这个技巧的呢?事实上,那是几个月前我在阅读《引力与时空》时,读到变分原理那一块时我怎么也读不懂,想不明白。明明我觉得是错误的东西,为什么可以得到正确的结果?我的数学直觉告诉我绝对是作者的错,可是我又想不出作者哪里错了,所以就一直把这个问题搁置着。最近我终于得到了自己比较满意的答案,并且窃认为是本文所要讲的这个技巧却被物理学家“误用”了。

技巧

首先来看通常我们是怎么处理变分问题的,以一元函数为例,对于求
$$S=\int L(x,\dot{x},t)dt$$

点击阅读全文...

8 Aug

CreaWriter,惬意创作!

最近打算记录一下过去生活的点点滴滴,于是便起了要找一个写作软件的想法。为什么呢?像Word之类的软件的确可以很完美地完成文档编辑的工作,可是写作并不是写论文,我想要的是一个能够让我有写作的惬意之感的软件,这显然是Word这类“巨无霸”所不能胜任的。上网搜索了一下,找到一个还算满意的软件——CreaWriter

CreaWriter_1

CreaWriter_1

点击阅读全文...

19 Aug

势能最小问题的探讨

本文我们来探讨下列积分的极值曲线:
$$S=\int f(x,y)\sqrt{dx^2+dy^2}=\int f(x,y)ds$$

这本质上也是一个短程线问题。但是它形式比较简答,物理含义也更加明显。比如,如果$f(x,y)$是势函数的话,那么这就是一个求势能最小的二维问题;如果$f(x,y)$是摩擦力函数,那么这就是寻找摩擦力最小的路径问题。不管是哪一种,该问题都有相当的实用价值。下面将其变分:

$$\begin{aligned} \delta S =&\int \delta[f(x,y)\sqrt{dx^2+dy^2}] \\ =&\int [ds\delta f(x,y)+f(x,y)\frac{\delta (dx^2+dy^2)}{2ds}]\\ =&\int ds(\frac{\partial f}{\partial x}\delta x+\frac{\partial}{\partial y}\delta y)+f \frac{dx d(\delta x)+dy d(\delta y)}{ds} \\=&\int ds(\frac{\partial f}{\partial x}\delta x+\frac{\partial}{\partial y}\delta y)+f \frac{dx}{ds} d(\delta x)+\frac{dy}{ds} d(\delta y) \end{aligned}$$

点击阅读全文...

11 Sep

《转山》,动人之旅

转山

转山

刚看完了电影《转山》,挺感动的,总觉得好像不写点东西就对不起这部电影了。

这还需要从上学期选公选课谈起。上学期我选择的公选课是数据库,而体育课则是太极,接近期末考的时候又重新选公选课了,我想选修一门轻松点、惬意点的课程,刚开始是选择了书法,后来看到了“自行车出行与户外旅游”,有点心动,再看上课老师,原来就是我们的太极老师,上了一学期的太极,跟他有些熟悉,也觉得他很好相处,就觉得选择这门课程了。

上一周二是这门课程是第一次课,老师讲得很精彩,而事实上,我唯一能够全程专心听课的就只有两门课程,一门就是这个公选课,另外就是马克思列宁主义(奇怪吧?确实是,马列老师讲得真的很精彩,我几乎没有分过神)。《转山》这部电影也是上公选课的时候老师推荐的,是根据同名小说改编的。大体的情节是一个台湾年轻人,只身踏上骑自行车从丽江到拉萨的旅途。影片描绘了他路上的崎岖行程,描绘了一路上的风土人情,让人颇为深刻。

点击阅读全文...

26 Nov

求解微分方程的李对称方法(二)

由于重装系统时的粗心大意,笔者把《求解微分方程的李对称方法》的Word文档弄丢了,更不幸的是存有该文档的U盘也弄丢了~没办法,只好重新把这篇文章录入了。幸好之前曾把它打印成纸质版,还有旧稿可以参考。现发布《求解微分方程的李对称方法(二)》,希望能够为对李对称方法有兴趣的朋友提供些许资源。

相比(一),(二)将所有内容重新用CTex录入了,果然,$\LaTeX$才是写数学论文软件中的佼佼者,虽然是纯代码编辑,但是这正符合我追求简洁清晰的风格。在内容上,(二)增加了一阶常微分方程组的内容,并对(一)的部分细节做了修改,本文完成后就初步相对完整地叙述了一阶常微分方程组的李对称积分的思路,内容增加到了13页。而在接下来的(三)中,将会提供李代数的内容;如果有(四)的话,就会谈到李对称方法的计算机实现。希望大家会喜欢这系列文章。更期待大家的读后感(包括挑错)^_^

点击阅读全文...