30 Sep

天宫一号成功发射!

昨晚九点十六分(据说准确时间是2011年9月29日21时16分03.507秒),天宫一号升空!

天宫一号发射

天宫一号发射

点击阅读全文...

2 Oct

[欧拉数学]素数有无穷多个的两个证明

素数是数的基本单元,就如同高楼大厦中的砖块一样。显然,素数有无穷多个是数论研究价值的前提。不然,数的研究就局限在有限个素数之内,那么很多数字就会失去了它们的魅力。就好比只有有限块砖头,就不能创建出建筑的奇迹一般。下面介绍两个关于素数无穷的经典证明,其中一个是欧几里得的证明,这是最原始、最简单的证法,相信很多读者已经学习过了,在此还是要提一下;另外一个是我在《怎样解题》中看到的,原作者是欧拉,也是一个非常美妙的证明。当然,本文强调的思想,论证过程可能会有一些不严谨的地方,请读者完善^_^

一、欧几里得证明

这个证明思想非常简单:若干个素数的积加上1后会产生新的素数因子。要是素数只有n个,那么我们就把它们相乘,然后加上1,得到的将会是什么呢?如果是一个素数,那么将会与素数只有n个矛盾;如果是一个合数,它除以原来的n个素数都不是整数,那么它就会拥有新的素数因子了,这还是和只有n个素数矛盾。不论哪种情况,只有素数有限,就会得出矛盾,于是素数必然是无限的。

点击阅读全文...

17 Nov

[欧拉数学]凸多面体的面、顶、棱公式

莱昂哈德·欧拉

莱昂哈德·欧拉

作为数学史上最高产的数学家(似乎没有之一),欧拉的研究几乎涉及了所有数学领域,包括数论、图论、微积分等,同时他还是一个物理学家,他与拉格朗日首创的变分法使得经典力学的研究达到了一个新的高度。欧拉具有惊人的计算能力和数学直觉,这对他的数学研究帮助极大。现在在很多领域,我们都可以看到不少以欧拉命名的公式、定理。欧拉在数学上极为高产,而且得出了相当多的正确结论,但其中有相当多的结论只是来源于他的数学直觉(创造性思维)以及类比推理,这并非欧拉不追求严谨,而是由于当时数学知识的局限性,难以严密化。还有,研究的顺序是:先得出答案,然后才论证答案!

再者,创造性思维往往令人叫绝,能更加促进我们的思维能力。过多地考虑严格性和技术细节,通常都妨碍了我们得出正确的答案。正如《解题的艺术》中说道粗略而有灵感的思想可能会引出严格证明;而有时,严格的证明会完全淡化论证的精髓。因此,我们不必在意欧拉证明的不严谨,反而,它是一次完美的视觉与思维享受。正因如此,一些绝妙、非严密、(在某种程度上)不正确的但同时得出了正确结果的数学论证,就被称为“欧拉数学”。事实上,任何人、任何研究都必须经过“欧拉数学”这一不严密的早期阶段。

------------华丽的分割线----------------

下面是一条关于凸多面体的面、顶、棱公式,它属于拓扑学的内容,我们称之为“欧拉公式”。(当然,公式是欧拉的,论证过程只是笔者粗糙地给出的)。

点击阅读全文...

23 Oct

2012年全年天象大观

Astronomy Calendar of Celestial Events
2012年全年天象

点击打开:http://kexue.fm/AC.html

翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html

(北京时间)

点击阅读全文...

18 Nov

[欧拉数学]黎曼ζ函数

欧拉数学的魅力在于,它运用类比的方法,把各个看似毫无关联的领域联系了起来,生动而巧妙地得出了正确的结果。他对$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...=\frac{\pi^2}{6}$的计算便是一个典型的例子。虽然论证过程未必严谨,但是那“神奇”的推导已经令我们拍案叫绝,而且往往发人深思。这种效果通常是严格论证难以实现的,它不仅给予我们答案,而且还给予了我们启迪:新的思想,新的方向;有时,它还揭示了各个学科之间内在而深刻的联系。下面我们来观察一下数论中的“黎曼ζ函数”和“金钥匙”!

黎曼ζ函数指的是:
$$\xi (s)=\sum_{n=1}^{\infty} \frac{1}{n^s}=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+...$$
本来s应该是一个实数,但是将复分析引入数论后,将s推广至复数具有更大的研究价值。

点击阅读全文...

1 Jan

2012年快乐!

眨眼间又一年了。时间如流水,匆匆不待人。

愿大家在新的一年里事事如意,突飞猛进!

今晚有事加班,就不多说些什么了。希望大家有空会来这里看看(不过高三里更新会非常慢,请谅解^_^)

龙年到

龙年到

13 Jan

混沌的世界——“星之轨迹”的研究

(本文已被刊登在2012年1月的《天文爱好者》上,于笔者而言这是一份很棒的新年礼物!)

《天爱》杂志页面.JPG

在去年第七期《天爱》上,我们看到了N体问题所呈现出来的一些对称、漂亮的周期轨道,这体现了N体问题和谐有序的一面。但是这仅仅是N体问题的冰山一角,笔者也提到过N体问题的本质是混沌、无序的,通俗来讲就是非常乱,无法用数学方程来精确描述。这看起来是一种不完美。但试想,探索当初伽利略将望远镜对准月球后,看到的是如想象中光滑的月面,那么他还会惊叹宇宙的神奇吗?

本文就让我们来更深入地了解一下N体问题的研究历史。

观测&拟合时代

由于人类的自我优越感以及日月星辰东升西落的经验,让我们长期都认为地球是宇宙的中心。第一个比较系统提出地心说的人当属天文学家欧多克斯(Eudoxus,死于公元前347年左右),但他的地心说是非常粗糙的,以至于无法解释很多基本现象,如无法准确预言日食和解释行星逆行等。但亚里士多德接受了地心说,并且由于他在政治和科学上的权威,使地心说免去了夭折的命运。后来托勒密通过他的本轮,完善了地心说,使之延续到了16世纪。

点击阅读全文...

21 Jan

[问题解答]木杆平衡

昨天一个QQ好友让我帮忙解决一道物理题目:

长为L的均匀木杆重Q,在木杆上离A端L/4处放有一重为Q/2的重物,平衡时,木杆AB与水平面的夹角θ有多大?

木杆平衡

木杆平衡

看上去挺有趣的。于是我先记了下来,今天早上思考了一会儿,得出了下面的结果。其中我解答并没有直接受力分析,而是用了我们之前已经谈到过的“最小势能原理”:平衡系统中的势能必取极(小)值

点击阅读全文...