8 Aug

【备忘】谈谈dropout

其实这只是一篇备忘...

dropout是深度学习中防止过拟合的一项有效措施,当然,就其思想而言,dropout其实也不仅仅可以用在深度学习中,还可以用在传统的机器学习方法中,只不过在深度学习的神经网络框架下,dropout显得更为自然罢了。

做了什么

dropout是怎么操作的?一般来做,对于输入的张量$x$,dropout就是将部分元素置零,然后将置零后的结果做一个尺度变换。具体来说,以Keras的Dropout(0.6)(x)为例,实际上等价于numpy做的这件事情

import numpy as np

x = np.random.random((10,100)) #模拟一个batch_size=10、维度为100的输入
def Dropout(x, drop_proba):
    return x*np.random.choice(
                              [0,1], 
                              x.shape,  
                              p=[drop_proba,1-drop_proba]
                             )/(1.-drop_proba)

print Dropout(x, 0.6)

点击阅读全文...

16 Oct

如何划分一个跟测试集更接近的验证集?

不管是打比赛、做实验还是搞工程,我们经常会遇到训练集与测试集分布不一致的情况。一般来说我们会从训练集中划分出来一个验证集,通过这个验证集来调整一些超参数(参考《训练集、验证集和测试集的意义》),比如控制模型的训练轮数以防止过拟合。然而,如果验证集本身跟测试集差别比较大,那么验证集上很好的模型也不代表在测试集上很好,因此如何让划分出来验证集跟测试集的分布差异更小一些,是一个值得研究的题目。

两种情况

首先,明确一下,本文所考虑的,是能给拿到测试集数据本身、但不知道测试集标签的场景。如果是那种提交模型封闭评测的场景,我们完全看不到测试集的,那就没什么办法了。为什么会出现测试集跟训练集分布不一致的现象呢?主要有两种情况。

点击阅读全文...

6 Oct

从马尔科夫过程到主方程(推导过程)

主方程(master equation)是对随机过程进行建模的重要方法,它代表着马尔科夫过程的微分形式,我们的专业主要工具之一就是主方程,说宏大一点,量子力学和统计力学等也不外乎是主方程的一个特例。

然而,笔者阅读了几个著作,比如《统计物理现代教程》,还有我导师的《生物系统的随机动力学》,我发现这些著作对于主方程的推导都很模糊,他们在着力解释结果的意义,但并不说明结果的思想来源,因此其过程难以让人信服。而知乎上有人提问《如何理解马尔科夫过程的主方程的推导过程?》但没有得到很好的答案,也表明了这个事实。

马尔可夫过程

主方程是用来描述马尔科夫过程的,而马尔科夫过程可以理解为运动的无记忆性,说通俗点,就是下一刻的概率分布,只跟当前时刻有关,跟历史状态无关。用概率公式写出来就是(这里只考虑连续型概率,因此这里的$p$是概率密度):
$$\begin{equation}\label{eq:maerkefu}p(x,\tau)=\int p(x,\tau|y,t) p(y,t) dy\end{equation}$$
这里的积分区域是全空间。这里的$p(x,\tau|y,t)$称为跃迁概率,即已经确定了$t$时刻来到了$y$位置后、在$\tau$时刻达到$x$的概率密度,这个式子的物理意义是很明显的,就不多做解释了。

点击阅读全文...

19 Nov

更别致的词向量模型(二):对语言进行建模

从条件概率到互信息

目前,词向量模型的原理基本都是词的上下文的分布可以揭示这个词的语义,就好比“看看你跟什么样的人交往,就知道你是什么样的人”,所以词向量模型的核心就是对上下文的关系进行建模。除了glove之外,几乎所有词向量模型都是在对条件概率$P(w|context)$进行建模,比如Word2Vec的skip gram模型就是对条件概率$P(w_2|w_1)$进行建模。但这个量其实是有些缺点的,首先它是不对称的,即$P(w_2|w_1)$不一定等于$P(w_1|w_2)$,这样我们在建模的时候,就要把上下文向量和目标向量区分开,它们不能在同一向量空间中;其次,它是有界的、归一化的量,这就意味着我们必须使用softmax等方法将它压缩归一,这造成了优化上的困难。

事实上,在NLP的世界里,有一个更加对称的量比单纯的$P(w_2|w_1)$更为重要,那就是
\[\frac{P(w_1,w_2)}{P(w_1)P(w_2)}=\frac{P(w_2|w_1)}{P(w_2)}\tag{1}\]
这个量的大概意思是“两个词真实碰面的概率是它们随机相遇的概率的多少倍”,如果它远远大于1,那么表明它们倾向于共同出现而不是随机组合的,当然如果它远远小于1,那就意味着它们俩是刻意回避对方的。这个量在NLP界是举足轻重的,我们暂且称它为“相关度“,当然,它的对数值更加出名,大名为点互信息(Pointwise Mutual Information,PMI):
\[\text{PMI}(w_1,w_2)=\log \frac{P(w_1,w_2)}{P(w_1)P(w_2)}\tag{2}\]

有了上面的理论基础,我们认为,如果能直接对相关度进行建模,会比直接对条件概率$P(w_2|w_1)$建模更加合理,所以本文就围绕这个角度进行展开。在此之前,我们先进一步展示一下互信息本身的美妙性质。

点击阅读全文...

21 Sep

细水长flow之f-VAEs:Glow与VAEs的联姻

这篇文章是我们前几天挂到arxiv上的论文的中文版。在这篇论文中,我们给出了结合流模型(如前面介绍的Glow)和变分自编码器的一种思路,称之为f-VAEs。理论可以证明f-VAEs是囊括流模型和变分自编码器的更一般的框架,而实验表明相比于原始的Glow模型,f-VAEs收敛更快,并且能在更小的网络规模下达到同样的生成效果。

原文地址:《f-VAEs: Improve VAEs with Conditional Flows》

近来,生成模型得到了广泛关注,其中变分自编码器(VAEs)流模型是不同于生成对抗网络(GANs)的两种生成模型,它们亦得到了广泛研究。然而它们各有自身的优势和缺点,本文试图将它们结合起来。

由f-VAEs实现的两个真实样本之间的线性插值

由f-VAEs实现的两个真实样本之间的线性插值

基础

设给定数据集的证据分布为$\tilde{p}(x)$,生成模型的基本思路是希望用如下的分布形式来拟合给定数据集分布
$$\begin{equation}q(x)=\int q(z)q(x|z) dz\end{equation}$$

点击阅读全文...

2 Oct

深度学习的互信息:无监督提取特征

随机采样的KNN样本

随机采样的KNN样本

对于NLP来说,互信息是一个非常重要的指标,它衡量了两个东西的本质相关性。本博客中也多次讨论过互信息,而我也对各种利用互信息的文章颇感兴趣。前几天在机器之心上看到了最近提出来的Deep INFOMAX模型,用最大化互信息来对图像做无监督学习,自然也颇感兴趣,研读了一番,就得到了本文。

本文整体思路源于Deep INFOMAX的原始论文,但并没有照搬原始模型,而是按照这自己的想法改动了模型(主要是先验分布部分),并且会在相应的位置进行注明。

我们要做什么

自编码器

特征提取是无监督学习中很重要且很基本的一项任务,常见形式是训练一个编码器将原始数据集编码为一个固定长度的向量。自然地,我们对这个编码器的基本要求是:保留原始数据的(尽可能多的)重要信息

我们怎么知道编码向量保留了重要信息呢?一个很自然的想法是这个编码向量应该也要能还原出原始图片出来,所以我们还训练一个解码器,试图重构原图片,最后的loss就是原始图片和重构图片的mse。这导致了标准的自编码器的设计。后来,我们还希望编码向量的分布尽量能接近高斯分布,这就导致了变分自编码器。

重构的思考

点击阅读全文...

8 Jan

最近把优化算法跟动力学结合起来思考得越来越起劲了,这是优化算法与动力学系列的第三篇,我有预感还会有第4篇,敬请期待~

简单来个剧情回顾:第一篇中我们指出了其实SGD相当于常微分方程(ODE)的数值解法:欧拉法;第二篇我们还是数值解法的误差分析的角度,分析了为什么可以通过梯度来调节学习率,因此也就解释了RMSprop、Adam等算法中,用梯度调节学习率的原理。

本文将给出一个更统一的观点来看待这两个事情,并且试图回答一个更本质的问题:为什么是梯度下降?

(注:本文的讨论没有涉及到动量加速部分。)

点击阅读全文...

19 Jun

简述无偏估计和有偏估计

对于大多数读者(包括笔者)来说,他们接触到的第一个有偏估计量,应该是方差
\begin{equation}\hat{\sigma}^2_{\text{有偏}} = \frac{1}{n}\sum_{i=1}^n \left(x_i - \hat{\mu}\right)^2,\quad \hat{\mu} = \frac{1}{n}\sum_{i=1}^n x_i\label{eq:youpianfangcha}\end{equation}
然后又了解到对应的无偏估计应该是
\begin{equation}\hat{\sigma}^2_{\text{无偏}} = \frac{1}{n-1}\sum_{i=1}^n \left(x_i - \hat{\mu}\right)^2\label{eq:wupianfangcha}\end{equation}
在很多人的眼里,公式$\eqref{eq:youpianfangcha}$才是合理的,怎么就有偏了?公式$\eqref{eq:wupianfangcha}$将$n$换成反直觉的$n-1$,反而就无偏了?

下面试图用尽量清晰的语言讨论一下无偏估计和有偏估计两个概念。

点击阅读全文...