19 Nov

更别致的词向量模型(一):simpler glove

如果问我哪个是最方便、最好用的词向量模型,我觉得应该是word2vec,但如果问我哪个是最漂亮的词向量模型,我不知道,我觉得各个模型总有一些不足的地方。且不说试验效果好不好(这不过是评测指标的问题),就单看理论也没有一个模型称得上漂亮的。

本文讨论了一些大家比较关心的词向量的问题,很多结论基本上都是实验发现的,缺乏合理的解释,包括:

如果去构造一个词向量模型?

为什么用余弦值来做近义词搜索?向量的内积又是什么含义?

词向量的模长有什么特殊的含义?

为什么词向量具有词类比性质?(国王-男人+女人=女王)

得到词向量后怎么构建句向量?词向量求和作为简单的句向量的依据是什么?

这些讨论既有其针对性,也有它的一般性,有些解释也许可以直接迁移到对glove模型和skip gram模型的词向量性质的诠释中,读者可以自行尝试。

围绕着这些问题的讨论,本文提出了一个新的类似glove的词向量模型,这里称之为simpler glove,并基于斯坦福的glove源码进行修改,给出了本文的实现,具体代码在Github上。

点击阅读全文...

19 Nov

更别致的词向量模型(二):对语言进行建模

从条件概率到互信息

目前,词向量模型的原理基本都是词的上下文的分布可以揭示这个词的语义,就好比“看看你跟什么样的人交往,就知道你是什么样的人”,所以词向量模型的核心就是对上下文的关系进行建模。除了glove之外,几乎所有词向量模型都是在对条件概率$P(w|context)$进行建模,比如Word2Vec的skip gram模型就是对条件概率$P(w_2|w_1)$进行建模。但这个量其实是有些缺点的,首先它是不对称的,即$P(w_2|w_1)$不一定等于$P(w_1|w_2)$,这样我们在建模的时候,就要把上下文向量和目标向量区分开,它们不能在同一向量空间中;其次,它是有界的、归一化的量,这就意味着我们必须使用softmax等方法将它压缩归一,这造成了优化上的困难。

事实上,在NLP的世界里,有一个更加对称的量比单纯的$P(w_2|w_1)$更为重要,那就是
\[\frac{P(w_1,w_2)}{P(w_1)P(w_2)}=\frac{P(w_2|w_1)}{P(w_2)}\tag{1}\]
这个量的大概意思是“两个词真实碰面的概率是它们随机相遇的概率的多少倍”,如果它远远大于1,那么表明它们倾向于共同出现而不是随机组合的,当然如果它远远小于1,那就意味着它们俩是刻意回避对方的。这个量在NLP界是举足轻重的,我们暂且称它为“相关度“,当然,它的对数值更加出名,大名为点互信息(Pointwise Mutual Information,PMI):
\[\text{PMI}(w_1,w_2)=\log \frac{P(w_1,w_2)}{P(w_1)P(w_2)}\tag{2}\]

有了上面的理论基础,我们认为,如果能直接对相关度进行建模,会比直接对条件概率$P(w_2|w_1)$建模更加合理,所以本文就围绕这个角度进行展开。在此之前,我们先进一步展示一下互信息本身的美妙性质。

点击阅读全文...

19 Nov

更别致的词向量模型(五):有趣的结果

最后,我们来看一下词向量模型$(15)$会有什么好的性质,或者说,如此煞费苦心去构造一个新的词向量模型,会得到什么回报呢?

模长的含义

似乎所有的词向量模型中,都很少会关心词向量的模长。有趣的是,我们上述词向量模型得到的词向量,其模长还能在一定程度上代表着词的重要程度。我们可以从两个角度理解这个事实。

在一个窗口内的上下文,中心词重复出现概率其实是不大的,是一个比较随机的事件,因此可以粗略地认为
\[P(w,w) \sim P(w)\tag{24}\]
所以根据我们的模型,就有
\[e^{\langle\boldsymbol{v}_{w},\boldsymbol{v}_{w}\rangle} =\frac{P(w,w)}{P(w)P(w)}\sim \frac{1}{P(w)}\tag{25}\]
所以
\[\Vert\boldsymbol{v}_{w}\Vert^2 \sim -\log P(w)\tag{26}\]
可见,词语越高频(越有可能就是停用词、虚词等),对应的词向量模长就越小,这就表明了这种词向量的模长确实可以代表词的重要性。事实上,$-\log P(w)$这个量类似IDF,有个专门的名称叫ICF,请参考论文《TF-ICF: A New Term Weighting Scheme for Clustering Dynamic Data Streams》。

点击阅读全文...

19 Nov

更别致的词向量模型(三):描述相关的模型

几何词向量

上述“月老”之云虽说只是幻想,但所面临的问题却是真实的。按照传统NLP的手段,我们可以统计任意两个词的共现频率以及每个词自身的频率,然后去算它们的相关度,从而得到一个“相关度矩阵”。然而正如前面所说,这个共现矩阵太庞大了,必须压缩降维,同时还要做数据平滑,给未出现的词对的相关度赋予一个合理的估值。

在已有的机器学习方案中,我们已经有一些对庞大的矩阵降维的经验了,比如SVD和pLSA,SVD是对任意矩阵的降维,而pLSA是对转移概率矩阵$P(j|i)$的降维,两者的思想是类似的,都是将一个大矩阵$\boldsymbol{A}$分解为两个小矩阵的乘积$\boldsymbol{A}\approx\boldsymbol{B}\boldsymbol{C}$,其中$\boldsymbol{B}$的行数等于$\boldsymbol{A}$的行数,$\boldsymbol{C}$的列数等于$\boldsymbol{A}$的列数,而它们本身的大小则远小于$\boldsymbol{A}$的大小。如果对$\boldsymbol{B},\boldsymbol{C}$不做约束,那么就是SVD;如果对$\boldsymbol{B},\boldsymbol{C}$做正定归一化约束,那就是pLSA。

但是如果是相关度矩阵,那么情况不大一样,它是正定的但不是归一的,我们需要为它设计一个新的压缩方案。借鉴矩阵分解的经验,我们可以设想把所有的词都放在$n$维空间中,也就是用$n$维空间中的一个向量来表示,并假设它们的相关度就是内积的某个函数(为什么是内积?因为矩阵乘法本身就是不断地做内积):
\[\frac{P(w_i,w_j)}{P(w_i)P(w_j)}=f\big(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle\big)\tag{8}\]
其中加粗的$\boldsymbol{v}_i, \boldsymbol{v}_j$表示词$w_i,w_j$对应的词向量。从几何的角度看,我们就是把词语放置到了$n$维空间中,用空间中的点来表示一个词。

因为几何给我们的感觉是直观的,而语义给我们的感觉是复杂的,因此,理想情况下我们希望能够通过几何关系来反映语义关系。下面我们就根据我们所希望的几何特性,来确定待定的函数$f$。事实上,glove词向量的那篇论文中做过类似的事情,很有启发性,但glove的推导实在是不怎么好看。请留意,这里的观点是新颖的——从我们希望的性质,来确定我们的模型,而不是反过来有了模型再推导性质

机场-飞机+火车=火车站

点击阅读全文...

19 Nov

更别致的词向量模型(六):代码、分享与结语

列表

更别致的词向量模型(一):simpler glove

更别致的词向量模型(二):对语言进行建模

更别致的词向量模型(三):描述相关的模型

更别致的词向量模型(四):模型的求解

更别致的词向量模型(五):有趣的结果

更别致的词向量模型(六):代码、分享与结语

代码

本文的实现位于:https://github.com/bojone/simpler_glove

点击阅读全文...

25 Nov

果壳中的条件随机场(CRF In A Nutshell)

本文希望用尽可能简短的语言把CRF(条件随机场,Conditional Random Field)的原理讲清楚,这里In A Nutshell在英文中其实有“导论”、“科普”等意思(霍金写过一本《果壳中的宇宙》,这里东施效颦一下)。

网上介绍CRF的文章,不管中文英文的,基本上都是先说一些概率图的概念,然后引入特征的指数公式,然后就说这是CRF。所谓“概率图”,只是一个形象理解的说法,然而如果原理上说不到点上,你说太多形象的比喻,反而让人糊里糊涂,以为你只是在装逼。(说到这里我又想怼一下了,求解神经网络,明明就是求一下梯度,然后迭代一下,这多好理解,偏偏还弄个装逼的名字叫“反向传播”,如果不说清楚它的本质是求导和迭代求解,一下子就说反向传播,有多少读者会懂?)

好了,废话说完了,来进入正题。

逐标签Softmax

CRF常见于序列标注相关的任务中。假如我们的模型输入为$Q$,输出目标是一个序列$a_1,a_2,\dots,a_n$,那么按照我们通常的建模逻辑,我们当然是希望目标序列的概率最大
$$P(a_1,a_2,\dots,a_n|Q)$$
不管用传统方法还是用深度学习方法,直接对完整的序列建模是比较艰难的,因此我们通常会使用一些假设来简化它,比如直接使用朴素假设,就得到
$$P(a_1,a_2,\dots,a_n|Q)=P(a_1|Q)P(a_2|Q)\dots P(a_n|Q)$$

点击阅读全文...

6 Jan

《Attention is All You Need》浅读(简介+代码)

2017年中,有两篇类似同时也是笔者非常欣赏的论文,分别是FaceBook的《Convolutional Sequence to Sequence Learning》和Google的《Attention is All You Need》,它们都算是Seq2Seq上的创新,本质上来说,都是抛弃了RNN结构来做Seq2Seq任务。

这篇博文中,笔者对《Attention is All You Need》做一点简单的分析。当然,这两篇论文本身就比较火,因此网上已经有很多解读了(不过很多解读都是直接翻译论文的,鲜有自己的理解),因此这里尽可能多自己的文字,尽量不重复网上各位大佬已经说过的内容。

序列编码

深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列。这样一来,每个句子都对应的是一个矩阵$\boldsymbol{X}=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_t)$,其中$\boldsymbol{x}_i$都代表着第$i$个词的词向量(行向量),维度为$d$维,故$\boldsymbol{X}\in \mathbb{R}^{n\times d}$。这样的话,问题就变成了编码这些序列了。

第一个基本的思路是RNN层,RNN的方案很简单,递归式进行:
\begin{equation}\boldsymbol{y}_t = f(\boldsymbol{y}_{t-1},\boldsymbol{x}_t)\end{equation}
不管是已经被广泛使用的LSTM、GRU还是最近的SRU,都并未脱离这个递归框架。RNN结构本身比较简单,也很适合序列建模,但RNN的明显缺点之一就是无法并行,因此速度较慢,这是递归的天然缺陷。另外我个人觉得RNN无法很好地学习到全局的结构信息,因为它本质是一个马尔科夫决策过程

点击阅读全文...

23 Jan

揭开迷雾,来一顿美味的Capsule盛宴

Geoffrey Hinton在谷歌多伦多办公室

Geoffrey Hinton在谷歌多伦多办公室

由深度学习先驱Hinton开源的Capsule论文《Dynamic Routing Between Capsules》,无疑是去年深度学习界最热点的消息之一。得益于各种媒体的各种吹捧,Capsule被冠以了各种神秘的色彩,诸如“抛弃了梯度下降”、“推倒深度学习重来”等字眼层出不穷,但也有人觉得Capsule不外乎是一个新的炒作概念。

本文试图揭开让人迷惘的云雾,领悟Capsule背后的原理和魅力,品尝这一顿Capsule盛宴。同时,笔者补做了一个自己设计的实验,这个实验能比原论文的实验更有力说明Capsule的确产生效果了

菜谱一览:

1、Capsule是什么?

2、Capsule为什么要这样做?

3、Capsule真的好吗?

4、我觉得Capsule怎样?

5、若干小菜。

点击阅读全文...