1 Sep

从费马大定理谈起(九):n=3

现在可以开始$n=3$的证明了。在实整数范围内n=3的证明看起来相当复杂,而且跟n=4的证明似乎没有相通之处。然而,如果我们在$\mathbb{Z}[\omega]$中考虑$x^3+y^3+z^3=0$无解的证明,就会跟n=4时有很多类似的地方,而且事实上证明比n=4时简单(要注意在实整数范围内的证明,n=4比n=3简单。费马完成了n=4的证明,但是没完成n=3的证明。)。我想,正是这样的类似之处,才让当初还没有完成证明的数学家拉梅就自信他从这条路可以完成费马大定理的证明。(不过,这自信却是失败的案例:拉梅的路不能完全走通,而沿着这条路走得更远的当属库默,但即便这样,库默也没有证明费马大定理。)

证明跟$n=4$的第二个证明是类似的。我们先往方程中添加一个单位数,然后证明无论单位数是什么,方程在$\mathbb{Z}[\omega]$中都无解。这是一个很妙的技巧,让我们证明了更多的方程无解,但是却用到了更少的步骤。事实上,存在着只证明$x^3+y^3+z^3=0$无解的证明,但需要非常仔细地分析里边的单位数情况,这是相当麻烦的。本证明是我参考了Fermats last theorem blogspot上的证明,然后结合本系列n=4的第二个证明,简化而来,主要是减少了对单位数的仔细分析。

点击阅读全文...

19 Aug

从费马大定理谈起(五):n=4

是时候了!

前面用好几篇文章为费马大定理的证明铺设了道路,当然,相当于完整的费马大定理证明来说,这几篇文章只不过是沧海一粟而已。不过,它们已经足够用来完成费马大定理在n=4时的证明了。我们很快会看到高斯整数为n=4所带来的简洁的证明,而这让我们坚信,这一道路可以走得更远。

不定方程$x^4+y^4=z^2$在$\mathbb{Z}[i]$中没有全不为0的解。

点击阅读全文...

19 Aug

从费马大定理谈起(六):n=4(2)

上一篇文章中,笔者提到似乎证明n=4时必须要证明$x^4+y^4=z^2$无解而不能只证明$x^4+y^4=z^4$无解。不过,在今天中午研究的时候,笔者发现了另外一个n=4的证明,它同样是在$\mathbb{Z}[i]$中,但是,证明的则是指数全是4的形式,但是,又不单单是$x^4+y^4=z^4$的形式,而是$\varepsilon x^4+y^4=z^4$,$\varepsilon$是单位数。这个证明过程,我觉得应该更接近n等于其他奇素数时的证明,遂补充了这篇文章,供大家参考。读者可以对比着上一篇文章进行比较阅读。

引理

用$\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon$表示$\mathbb{Z}[i]$中的单位数,下面先证明

如果方程$\varepsilon_1 x'^4 +\varepsilon_2 y'^4+\varepsilon_3 z'^4=0$在$\mathbb{Z}[i]$中有全不为0的解,那么在经过适当的化简和整理之后,方程必有形式$\varepsilon x^4+y^4=z^4$,其中$(x,y,z)$是$(x',y',z')$的某个置换,$\xi^2|x$。

点击阅读全文...

30 Aug

从费马大定理谈起(八):艾森斯坦整数

Gotthold_Eisenstein

Gotthold_Eisenstein

是时候向n=3进军了,为了证明这个情况,我们需要一个新的数环:艾森斯坦整数(Eisenstein Integer)。艾森斯坦是德国著名数学家,同时代的高斯曾经评价:“只有三个划时代的数学家:阿基米德,牛顿和艾森斯坦。”足见艾森斯坦的成就斐然。事实上,阅读费马大定理的研究史,同时也是在阅读数学名人录——没有超高的数学,几乎不可能在费马大定理中有所建树。

基本定义

跟高斯整数一样,艾森斯坦整数也是复整数的一种,其中,高斯整数是以1和$i$为基,$i$其实是一个四次单位根,也就是$x^4-1=0$的一个非实数根,因此高斯整数也叫做四次分圆整数;而艾森斯坦整数以1和$\omega$为基,$\omega$是三次单位根,也就是$x^3-1=0$的一个非实数根。任意一个艾森斯坦整数都可以记为$a+b\omega,\,a,b\in\mathbb{Z}$,艾森斯坦整数环记为$\mathbb{Z}[\omega]$,也称为三次分圆整数环

点击阅读全文...

23 Aug

从费马大定理谈起(七):费马平方和定理

本想着开始准备n=3的证明,但这需要引入Eisenstein整数的概念,而我们已经引入了高斯整数,高斯整数的美妙还没有很好地展示给读者。从n=4的两个证明可以知道,引入高斯整数的作用,是把诸如$z^n-y^n$的式子进行完全分解。然而,这一点并没有给我们展示多少高斯整数的神奇。读者或许已经知道,复分析中很多简单的结果,如果单纯用实数描述出来,便会给人巧夺天工的感觉,在涉及到高斯整数的数论中也是一样。本文就让我们来思考费马平方和定理,以此再领会在高斯整数中处理某些数论问题时的便捷。——我们从费马大定理谈起,但又并不仅仅只谈费马大定理。

费马平方和定理:奇素数$p$可以表示为两个整数的平方和,当且仅当该素数具有$4k+1$的形式,而且不考虑相加顺序的情况下,表示法是唯一的。

点击阅读全文...

28 Aug

让风筝飞

最近的很多篇文章都是数论内容,属于纯数学的范畴了,对于很多只爱好物理或应用数学的读者可能会看得头晕了。今天我们来谈些不那么抽象的东西,我们来谈谈风筝,并来分析一下风筝的飞行力学

爱情就像放风筝,线不能来得太紧,也不能拉得太松,你只会给对方飞翔的空间,他/她始终会回到你身边,因为有一条线系着双方。

放风筝(来自互联网)

放风筝(来自互联网)

风筝,在我们这个地方叫做纸鸢,相信大家童年时一定会放过。笔者小时候放风筝时,已经是小学五年级之前的事了。这个暑假突然童心一起,凭着小时候的回忆,简单做了个风筝来玩,居然真的飞起来了!兴奋之余,与大家分享一下。如今再来放风筝,真心感觉到放风筝也有很多技巧,让风筝飞,还不是件容易的事情呢,真可谓人生处处皆学问呀。上面关于风筝的比喻,正是放风筝的真实写照吧。

风筝可以说是人类摆脱地球重力的最原始尝试吧,跟发射宇宙飞船的火箭不同,风筝是借助风力来抵抗重力,严格来讲,即便是现在的飞机,也离不开这个原理(我们最后会谈到)。简单来讲,风筝就是用轻的支架撑开一个轻盈的平面,然后系上一个线圈。我们简单做一个风筝,只需要一张报纸,两条竹篾和一点透明胶,十分钟内就可以完成一个。当然,现在已经有各种各样的好看的风筝,甚至还有龙形的风筝,但是,自己动手简单做一个风筝,还是相当好玩的。

风筝自然是借助风力飞起来的,可是为什么风筝得用绳子牵着才能飞得更高、绳断了反而掉下来?风大多时,才适合放风筝?飞机又是怎么飞起来的?下面我们试着分析这些问题。

点击阅读全文...

7 Oct

班门弄斧:Python的代码能有多简洁?

此文很水,高手略过...

Python以它的开发效率而闻名,优秀的开发效率自然意味着它能够用更少的代码实现更多的功能。那么,对于同一个问题,Python的代码能有多简洁?而我们怎么平衡开发效率和运行效率?笔者学了几个月Python,略懂一点,在此班门弄斧一翻。

在此,我们来编程计算
$$\sum_{n=0}^{10} n^2$$
这当然是一道非常简单的习题。按照一般思路,写出来的最自然的代码就是:

s=0
for i in range(11):
    s = s + i**2

print(s)

点击阅读全文...

10 Oct

从费马大定理谈起(十):x^3+y^3=z^3+w^3

Ramanujan

Ramanujan

在正式开始数学之前,我们不妨先说一个关于印度著名数学天才——拉马努金的轶事。拉马努金病重,哈代前往探望。哈代说:“我乘出租车来,车牌号码是1729,这数真没趣,希望不是不祥之兆。”拉马努金答道:“不,那是个有趣得很的数。可以用两个立方之和来表达而且有两种表达方式的数之中,1729是最小的。”(即$1729 = 1^3+12^3 = 9^3+10^3$,后来这类数称为的士数。)利特尔伍德回应这宗轶闻说:“每个整数都是拉马努金的朋友。”(来自维基百科

从这则轶事中,我们发现,确实存在的某些整数,可以表示为两种不同的立方和,换句话说,不定方程:
$$x^3+y^3=z^3+w^3$$

点击阅读全文...