17 Jun

从牛顿力学角度研究宇宙学

Universe_expansion

Universe_expansion

不少天文爱好者对宇宙学这方面的内容“听而生畏”,觉得没有爱因斯坦的广义相对论等复杂理论基础是不可理解的。的确,这种观点没有错,当前的宇宙学对宇宙的精确描述,的确是建立在广义相对论和量子力学等理论的基础之上的。BoJone也只是在书上略略浏览,根本谈不上有什么了解。但是,对于一般的天文爱好者来说,只要对牛顿力学和微积分有一定的了解,就可以对我们的宇宙有一个大概的描述,也能够得出很多令人惊喜的结论。相信进行了这项工作之后,很多爱好者都会改观:原来宇宙学也并不是那么难...并且能够得出这样的一个结论:广义相对论虽然对牛顿引力理论进行了彻底的改革,但是从数学的角度来讲,它仅仅对牛顿力学进行了修正。

点击阅读全文...

27 Jun

威力巨大的“有向线段”

向量

向量

向量,又称矢量,定义为线性空间中需要大小和方向才能完整表示的一个量。而对于我们来说,还是使用最简单的概念比较合适:向量就是“有向线段”。向量这一概念,来源于物理,而又不仅仅应用于物理。向量的出现,使得几何学和物理学的发展又多了一个强有力的工具,记得有一句这样的话:“对数的出现,延长了天文学家的寿命。”而我可以毫不夸张地说,向量的发展,也在不断地延长着数学家和物理学家的寿命!

点击阅读全文...

15 Jul

《向量》系列——1.向心力公式证明

向量在几何和物理中都有极其重要的作用,现在就让我们来看如何用向量研究物理中的圆周运动。

首先我们必须了解一些基础:

1.在向量中,只要一条“向径”($\vec{r}$)就可以描述出物体的运动,而不需要建立坐标系。这就是向量应用于物理的原因:物理定律不应该依赖于坐标系,而向量恰恰也不依赖于坐标系!
2.牛顿第二定律:$\vec{F}=m\vec{a}$
3.以及一些向量的微积分运算等(可以查阅维基百科或者相关资料)

在下面及以后的文章描述中,为了大家的阅读方便,把向量写成$\vec{r}$的形式,而非把字母加粗。一般情况下,在本站的描述中,有$|\vec{r}|=r,|\dot{\vec{r}}|=v,|\ddot{\vec{r}}|=a$。但是,$\dot{r}=\frac{d|\vec{r}|}{dt} != |\dot{\vec{r}}|$

点击阅读全文...

18 Jul

《向量》系列——2.曲率半径

圆周是如此地和谐与完美,致使数学家和物理学家对它钟爱有加。几何上可以把一条曲线的局部看做一个圆弧,利用圆的性质去研究它(在数学上,曲率半径的倒数就是曲率,曲率越大,曲线越弯曲);物理学家喜欢把一个质点的曲线运动轨迹的局部看做圆周运动,利用圆周运动的方法来描述这种运动。这两种研究方法都告诉了我们,两种不同的“线”在极小的范围内可以等效的,这也为我们对科学进行探究提供了一点指导思想:把未知变已知,以已知看未知。物理学和数学的两种处理方法中,有一点是殊途同归的:那就是看轨迹看成一个圆后,圆的半径是多少?我们首先得求出它。

在数学分析上可以利用微积分的相关知识来推导曲率半径公式,而BoJone则更偏爱物理方法,通过物理和向量知识的结合,推导出曲率半径公式,让BoJone感到“别有一番风味”。

点击阅读全文...

24 Jul

《向量》系列——3.当天体力学遇到向量(1)

不知道各位读者还记得BoJone在《方程与宇宙》这一章中写了整整三篇文章来学习天体力学中的二体问题吗?虽然对二体问题基本上做了一个描述,但是依旧是冰山一角。而在最近写的几篇文章中,BoJone又强调了“向量”的巨大作用。那么,当天体力学与向量碰头后,会发生什么大事呢?难道,火星撞上了地球?

点击阅读全文...

30 Jul

旋转的弹簧将如何伸长?

旋转的弹簧

旋转的弹簧

一根均匀的弹簧长度l

0

,线密度λ

0

,劲度系数k,总质量M。现在没有重力的环境下,绕其一端作角速度ω的旋转(角速度恒定),则此时其长度变为多少?

这是网友“宇宙为家”在几天前提出的问题。期间我曾做过多次解答,犯了若干次错误,经过修修补补,得出了最后的答案,在此感谢“宇宙为家”朋友的多次提醒。如果下面的答案依旧有错误,望各位读者发现并指出。

点击阅读全文...

2 Aug

科学空间:2010年8月重要天象

meteoroid_perseus2007

meteoroid_perseus2007

即将到来的八月,精彩天象曾出不穷。在这个月13日,不仅有观测条件非常好的英仙座流星雨光临,还有傍晚西方天空中令人期待的四星伴月天象;水星和金星两颗行星双双东大距,以及各行星的璀璨光芒,揭开了行星观测的序幕。总体来说,如果天气不来搅局,相信本月的精彩天象一定不会令天文爱好者失望。八月,正值盛夏时节,天朗气清,正是观测的好时机,天文爱好者总是为夜晚的短暂而感到遗憾。八月里,天象依旧,热情依旧。

点击阅读全文...

7 Aug

旋转的弹簧将如何伸长(2)?

弹簧

弹簧

上一次我从密度的角度讨论了旋转的弹簧伸长的问题,由于对弹性形变等问题是初涉,所以花了好大功夫。这几天重新认识了一下胡克定律,并且从另外的角度给出了这道题目的一个相对简单的解法。在此把它记录下来,并写写我对弹性形变的一些粗浅看法。

在解答的过程中,我再次体验到了殊途同归的感觉,科学就是这样的奇妙,一个目的地往往有着不止一条道路,不同的道路会给我们不同的科学视觉,最终领略到不同的科学美景;多走几条路,更能够让我们从不同的角度领略美不胜收的科学,这也是众多旅游爱好者不辞千里地观赏美景的原因!

点击阅读全文...