椭圆面积和周长的求法,看上去没有什么区别。不过实际上它们的难度有着天壤之别。
椭圆所包围的面积是$S=\pi ab$,这里的a和b是半长轴和半短轴。仅根据椭圆标准方程就可以推导出来。
目前还没有找到椭圆周长的一般公式,要想精确求解,只有代入以下无穷级数:
$$C=2\pi a [1 - (1/2)^2 (\frac{c}{a})^2 - ({1\cdot 3}/{2\cdot 4})^2{c^4}/{3a^4} - ({1\cdot 3\cdot 5}/{2\cdot 4\cdot 6})^2{c^6}/{5a^6}-...]$$
可以写成:
$$C = 2\pi a \sum_{n=0}^{\infty} { - [\prod_{m=1}^n ({2m-1}/{2m})]^2 {c^{2n}}/{a^{2n}(2n - 1)}}$$
距离c 叫做椭圆的线性离心率,等于从中心到任一焦点的距离
美华裔教授破百年物理定律 获国际同行喝彩(图)
By 苏剑林 | 2009-08-03 | 17007位读者 | 引用五种零食揭示宇宙的形状
By 苏剑林 | 2009-08-06 | 20958位读者 | 引用2009年5月22日,对于很多人来说并不是什么特别的日志,不过数学界这边又传来了一个“喜讯”:我们已经找到了第47个梅森素数,即$2^{42643801}-1$是一个素数!新的素数已于6月12日通过法国的Tony Reix的验证,这是目前的第二大素数,有12,837,064位数字!这是通过参加一个名为“因特网梅森素数大搜索”(GIMPS)的国际合作项目而发现的。让我们来共同回顾这一素数之旅!
素数/梅森素数
素数,现在课本上都已经成为“质数”了,不过目前很多数学家、爱好者都还是将其称为素数(也许这个名字好听)。这是指一些不可分解成两个比它本身小的两个整数相乘的形式的数,如2、3、5、7等。除了2外,所有的素数都是奇数。
【NASA每日一图】武汉上空的日食“钻戒”
By 苏剑林 | 2009-08-08 | 18037位读者 | 引用科学家计划研制造云船对抗全球变暖(图)
By 苏剑林 | 2009-08-12 | 24099位读者 | 引用微积分学习(一):极限
By 苏剑林 | 2009-08-16 | 27076位读者 | 引用本文不是微积分教程,而是发表自己学习中的一些看法,以及与同好们讨论相关问题。
拿起任何一本“微积分”教程,都可以看见那专业而严格的数学语言,因此很多人望而生畏。的确,由于牛顿和莱布尼茨创立的微积分是不严格的,因此引发了第二次数学危机。经过法国数学家柯西和德国数学家魏尔斯特拉斯的努力,使得微积分有了前所未有的严密化,克服了第二次数学危机。加之后来的第三次数学危机,数学就更加严密了。
但是对于初学者,严密化的微积分令人十分费解。因此,我们不妨按照微积分的创立顺序,即“不严密——严密”的顺序来学习。这样不仅能够让我们更高效率地学习,而且增加学习数学的兴趣。
最近评论