RNN模型中输入的重要性的评估
By 苏剑林 | 2017-09-10 | 30188位读者 | 引用Saliency Maps for RNN
RNN是很多序列任务的不二法门,比如文本分类任务的常用方法就是“词向量+LSTM+全连接分类器”。如下图
假如这样的一个模型可以良好地工作,那么现在考虑一个任务是:如何衡量输入$w_1,\dots,w_n$对最终的分类结果的影响的重要程度(Saliency)呢?例如假设这是一个情感分类任务,那么怎么找出是哪些词对最终的分类有较为重要的影响呢?本文给出了一个较为直接的思路。
思路的原理很简单,因为我们是将RNN最后一步的状态向量(也就是绿色阴影所代表的向量)传递给后面的分类器进行分类的,因此最后一步的状态向量$\boldsymbol{h}_n$就是一个目标向量。而RNN是一个递推的过程,
短文本匹配Baseline:脱敏数据使用预训练模型的尝试
By 苏剑林 | 2021-03-05 | 108783位读者 | 引用百科翻译:臭氧的性质
By 苏剑林 | 2009-07-08 | 24254位读者 | 引用臭氧对于我们来说是极为重要的,可以说,没有臭氧,我们都会死于紫外线的强烈照射之下!这里翻译了一些关于臭氧的信息,来源于http://en.wikipedia.org/wiki/Ozone,中文维基为http://zh.wikipedia.org/w/index.php?title=%E8%87%AD%E6%B0%A7&variant=zh-cn
臭氧,英文名为Ozone或trioxygen,化学式$O_3$,每个臭氧分子含有3个氧原子,属于三原子分子。与氧气是同素异形体(组成元素相同,但是结构不同,所表现出来的性质也不同),但比氧气更不稳定。在地表上的臭氧是一种空气污染物,对人和动物的呼吸道系统会产生有害影响。而大气层上部的臭氧层则能够吸收大量的紫外线,使地球的生物不受过量紫外线的侵害。
最近评论