11 Mar

一维弹簧的运动(上)

我们通常用一个波动方程来描述弦的振动,但是,弦的振动是二维的,也就是说,它的“波”是在垂直方向的位移。让我们来考虑一根一端固定的一维理想弹簧,胡克系数为$k$,它的松弛状态是均匀的,线密度是$\rho$,长度是$l$,质量是$m$。

如何弹?
我们要分析这根弹簧的运动,即给定弹簧的初始状态,看弹簧的密度如何变化,这种情况类似于“横波”。但是,弹簧本身是连续介质,这是我们不熟悉的,但是我们可以将它离散化,将它看成无数个小质点的弹簧链。如下图

离散的弹簧

离散的弹簧

点击阅读全文...

16 Apr

采样定理:有限个点构建出整个函数

假设我们在听一首歌,那么听完这首歌之后,我们实际上在做这样的一个过程:耳朵接受了一段时间内的声波刺激,从而引起了大脑活动的变化。而这首歌,也就是这段时间内的声波,可以用时间$t$的函数$f(t)$描述,这个函数的区间是有限的,比如$t\in[0,T]$。接着假设另外一个场景——我们要用电脑录下我们唱的歌。这又是怎样一个过程呢?要注意电脑的信号是离散化的,而声波是连续的,因此,电脑要把歌曲记录下来,只能对信号进行采样记录。原则上来说,采集的点越多,就能够越逼真地还原我们的歌声。可是有一个问题,采集多少点才足够呢?在信息论中,一个著名的“采样定理”(又称香农采样定理,奈奎斯特采样定理)告诉我们:只需要采集有限个样本点,就能够完整地还原我们的输入信号来!

采集有限个点就能够还原一个连续的函数?这是怎么做到的?下面我们来解释这个定理。

任意给定一个函数,一般来说我们都可以将它做傅里叶变换:
$$F(\omega)=\int_{-\infty}^{+\infty} f(t)e^{i\omega t}dt\tag{1}$$
虽然我们的积分限写了正负无穷,但是由于$f(t)$是有限区间内的函数,所以上述积分区间实际上是有限的。

点击阅读全文...

8 Jun

互怼的艺术:从零直达WGAN-GP

前言

GAN,全称Generative Adversarial Nets,中文名是生成对抗式网络。对于GAN来说,最通俗的解释就是“伪造者-鉴别者”的解释,如艺术画的伪造者和鉴别者。一开始伪造者和鉴别者的水平都不高,但是鉴别者还是比较容易鉴别出伪造者伪造出来的艺术画。但随着伪造者对伪造技术的学习后,其伪造的艺术画会让鉴别者识别错误;或者随着鉴别者对鉴别技术的学习后,能够很简单的鉴别出伪造者伪造的艺术画。这是一个双方不断学习技术,以达到最高的伪造和鉴别水平的过程。 然而,稍微深入了解的读者就会发现,跟现实中的造假者不同,造假者会与时俱进地使用新材料新技术来造假,而GAN最神奇而又让人困惑的地方是它能够将随机噪声映射为我们所希望的正样本,有噪声就有正样本,这不是无本生意吗,多划算~

另一个情况是,自从WGAN提出以来,基本上GAN的主流研究都已经变成了WGAN上去了,但WGAN的形式事实上已经跟“伪造者-鉴别者”差得比较远了。而且WGAN虽然最后的形式并不复杂,但是推导过程却用到了诸多复杂的数学,使得我无心研读原始论文。这迫使我要找从一条简明直观的线索来理解GAN。幸好,经过一段时间的思考,有点收获。

点击阅读全文...

19 Nov

更别致的词向量模型(五):有趣的结果

最后,我们来看一下词向量模型$(15)$会有什么好的性质,或者说,如此煞费苦心去构造一个新的词向量模型,会得到什么回报呢?

模长的含义

似乎所有的词向量模型中,都很少会关心词向量的模长。有趣的是,我们上述词向量模型得到的词向量,其模长还能在一定程度上代表着词的重要程度。我们可以从两个角度理解这个事实。

在一个窗口内的上下文,中心词重复出现概率其实是不大的,是一个比较随机的事件,因此可以粗略地认为
\[P(w,w) \sim P(w)\tag{24}\]
所以根据我们的模型,就有
\[e^{\langle\boldsymbol{v}_{w},\boldsymbol{v}_{w}\rangle} =\frac{P(w,w)}{P(w)P(w)}\sim \frac{1}{P(w)}\tag{25}\]
所以
\[\Vert\boldsymbol{v}_{w}\Vert^2 \sim -\log P(w)\tag{26}\]
可见,词语越高频(越有可能就是停用词、虚词等),对应的词向量模长就越小,这就表明了这种词向量的模长确实可以代表词的重要性。事实上,$-\log P(w)$这个量类似IDF,有个专门的名称叫ICF,请参考论文《TF-ICF: A New Term Weighting Scheme for Clustering Dynamic Data Streams》。

点击阅读全文...

23 Jan

揭开迷雾,来一顿美味的Capsule盛宴

Geoffrey Hinton在谷歌多伦多办公室

Geoffrey Hinton在谷歌多伦多办公室

由深度学习先驱Hinton开源的Capsule论文《Dynamic Routing Between Capsules》,无疑是去年深度学习界最热点的消息之一。得益于各种媒体的各种吹捧,Capsule被冠以了各种神秘的色彩,诸如“抛弃了梯度下降”、“推倒深度学习重来”等字眼层出不穷,但也有人觉得Capsule不外乎是一个新的炒作概念。

本文试图揭开让人迷惘的云雾,领悟Capsule背后的原理和魅力,品尝这一顿Capsule盛宴。同时,笔者补做了一个自己设计的实验,这个实验能比原论文的实验更有力说明Capsule的确产生效果了

菜谱一览:

1、Capsule是什么?

2、Capsule为什么要这样做?

3、Capsule真的好吗?

4、我觉得Capsule怎样?

5、若干小菜。

点击阅读全文...

2 Mar

三味Capsule:矩阵Capsule与EM路由

事实上,在论文《Dynamic Routing Between Capsules》发布不久后,一篇新的Capsule论文《Matrix Capsules with EM Routing》就已经匿名公开了(在ICLR 2018的匿名评审中),而如今作者已经公开,他们是Geoffrey Hinton, Sara Sabour, Nicholas Frosst。不出大家意料,作者果然有Hinton。

大家都知道,像Hinton这些“鼻祖级”的人物,发表出来的结果一般都是比较“重磅”的。那么,这篇新论文有什么特色呢?

在笔者的思考过程中,文章《Understanding Matrix capsules with EM Routing 》给了我颇多启示,知乎上各位大神的相关讨论也加速了我的阅读,在此表示感谢。

论文摘要

让我们先来回忆一下上一篇介绍《再来一顿贺岁宴:从K-Means到Capsule》中的那个图

Capsule框架的简明示意图

Capsule框架的简明示意图

这个图表明,Capsule事实上描述了一个建模的框架,这个框架中的东西很多都是可以自定义的,最明显的是聚类算法,可以说“有多少种聚类算法就有多少种动态路由”。那么这次Hinton修改了什么呢?总的来说,这篇新论文有以下几点新东西:

1、原来用向量来表示一个Capsule,现在用矩阵来表示;

2、聚类算法换成了GMM(高斯混合模型);

3、在实验部分,实现了Capsule版的卷积。

点击阅读全文...

11 Aug

细水长flow之NICE:流模型的基本概念与实现

前言:自从在机器之心上看到了glow模型之后(请看《下一个GAN?OpenAI提出可逆生成模型Glow》),我就一直对其念念不忘。现在机器学习模型层出不穷,我也经常关注一些新模型动态,但很少像glow模型那样让我怦然心动,有种“就是它了”的感觉。更意外的是,这个效果看起来如此好的模型,居然是我以前完全没有听说过的。于是我翻来覆去阅读了好几天,越读越觉得有意思,感觉通过它能将我之前的很多想法都关联起来。在此,先来个阶段总结。

背景

本文主要是《NICE: Non-linear Independent Components Estimation》一文的介绍和实现。这篇文章也是glow这个模型的基础文章之一,可以说它就是glow的奠基石。

艰难的分布

众所周知,目前主流的生成模型包括VAE和GAN,但事实上除了这两个之外,还有基于flow的模型(flow可以直接翻译为“流”,它的概念我们后面再介绍)。事实上flow的历史和VAE、GAN它们一样悠久,但是flow却鲜为人知。在我看来,大概原因是flow找不到像GAN一样的诸如“造假者-鉴别者”的直观解释吧,因为flow整体偏数学化,加上早期效果没有特别好但计算量又特别大,所以很难让人提起兴趣来。不过现在看来,OpenAI的这个好得让人惊叹的、基于flow的glow模型,估计会让更多的人投入到flow模型的改进中。

glow模型生成的高清人脸

glow模型生成的高清人脸

点击阅读全文...

19 Apr

从DCGAN到SELF-MOD:GAN的模型架构发展一览

事实上,O-GAN的发现,已经达到了我对GAN的理想追求,使得我可以很惬意地跳出GAN的大坑了。所以现在我会试图探索更多更广的研究方向,比如NLP中还没做过的任务,又比如图神经网络,又或者其他有趣的东西。

不过,在此之前,我想把之前的GAN的学习结果都记录下来。

这篇文章中,我们来梳理一下GAN的架构发展情况,当然主要的是生成器的发展,判别器一直以来的变动都不大。还有,本文介绍的是GAN在图像方面的模型架构发展,跟NLP的SeqGAN没什么关系。

此外,关于GAN的基本科普,本文就不再赘述了。

棋盘效应图示,体现为放大之后出现如国际象棋棋盘一样的交错效应。图片来自文章《Deconvolution and Checkerboard Artifacts》

棋盘效应图示,体现为放大之后出现如国际象棋棋盘一样的交错效应。图片来自文章《Deconvolution and Checkerboard Artifacts》

点击阅读全文...