Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
3 Jul

《交换代数导引》参考答案

这学期我们的一门课是《交换代数》,是本科抽象代数的升级版。我们用的教材是Atiyah的《Introduction to Commutative Algebra》(交换代数导引),而且根据老师的上课安排,还需要我们把部分课后习题完成并讲解...不得不说这门课上得真累啊~

习题做到后面,我干脆懒得起草稿了,直接把做的答案用LaTeX录入了,既方便排版也方便修改。在这里分享给有需要的读者~答案是用中文写的,注释比较详细,适合刚学这门课的同学~

笔者所做的部分:《交换代数导引》参考答案.pdf

当然这份答案只包括老师对我们的要求的那部分习题,下面是网上搜索到的完整的习题解答,英文版的:

网上找到的答案:Jeffrey Daniel Kasik Carlson - Exercises to Atiya.pdf

如果答案有问题,欢迎留言指出。

27 Oct

什么时候多进程的加速比可以大于1?

多进程或者多线程等并行加速目前已经不是什么难事了,相信很多读者都体验过。一般来说,我们会有这样的结论:多进程的加速比很难达到1。换句话说,当你用10进程去并行跑一个任务时,一般只能获得不到10倍的加速,而且进程越多,这个加速比往往就越低。

要注意,我们刚才说“很难达到1”,说明我们的潜意识里就觉得加速比最多也就是1。理论上确实是的,难不成用10进程还能获得20倍的加速?这不是天上掉馅饼吗?不过我前几天确实碰到了一个加速比远大于1的例子,所以在这里跟大家分享一下。

词频统计

我的原始任务是统计词频:我有很多文章,然后我们要对这些文章进行分词,最后汇总出一个词频表出来。一般的写法是这样的:

tokens = {}

for text in read_texts():
    for token in tokenize(text):
        tokens[token] = tokens.get(token, 0) + 1

这种写法在我统计THUCNews全部文章的词频时,大概花了20分钟。

点击阅读全文...

29 Dec

SquarePlus:可能是运算最简单的ReLU光滑近似

ReLU函数,也就是max,是最常见的激活函数之一,然而它在x=0处的不可导通常也被视为一个“槽点”。为此,有诸多的光滑近似被提出,比如SoftPlus、GeLU、Swish等,不过这些光滑近似无一例外地至少都使用了指数运算e^x(SoftPlus还用到了对数),从“精打细算”的角度来看,计算量还是不小的(虽然当前在GPU加速之下,我们很少去感知这点计算量了)。最近有一篇论文《Squareplus: A Softplus-Like Algebraic Rectifier》提了一个更简单的近似,称为SquarePlus,我们也来讨论讨论。

需要事先指出的是,笔者是不建议大家花太多时间在激活函数的选择和设计上的,所以虽然分享了这篇论文,但主要是提供一个参考结果,并充当一道练习题来给大家“练练手”。

定义

SquarePlus的形式很简单,只用到了加、乘、除和开方:
\begin{equation}\text{SquarePlus}(x)=\frac{x+\sqrt{x^2+b}}{2}\end{equation}

点击阅读全文...

10 May

logsumexp运算的几个不等式

\text{logsumexp}是机器学习经常遇到的运算,尤其是交叉熵的相关实现和推导中都会经常出现,同时它还是\max的光滑近似(参考《寻求一个光滑的最大值函数》)。设x=(x_1,x_2,\cdots,x_n)\text{logsumexp}定义为
\begin{equation}\text{logsumexp}(x)=\log\sum_{i=1}^n e^{x_i}\end{equation}
本文来介绍\text{logsumexp}的几个在理论推导中可能用得到的不等式。

基本界

x_{\max} = \max(x_1,x_2,\cdots,x_n),那么显然有
\begin{equation}e^{x_{\max}} < \sum_{i=1}^n e^{x_i} \leq \sum_{i=1}^n e^{x_{\max}} = ne^{x_{\max}}\end{equation}
各端取对数即得
\begin{equation}x_{\max} < \text{logsumexp}(x) \leq x_{\max} + \log n\end{equation}

点击阅读全文...

9 Nov

CoSENT(三):作为交互式相似度的损失函数

《CoSENT(一):比Sentence-BERT更有效的句向量方案》中,笔者提出了名为“CoSENT”的有监督句向量方案,由于它是直接训练cos相似度的,跟评测目标更相关,因此通常能有着比Sentence-BERT更好的效果以及更快的收敛速度。在《CoSENT(二):特征式匹配与交互式匹配有多大差距?》中我们还比较过它跟交互式相似度模型的差异,显示它在某些任务上的效果还能直逼交互式相似度模型。

然而,当时笔者是一心想找一个更接近评测目标的Sentence-BERT替代品,所以结果都是面向有监督句向量的,即特征式相似度模型。最近笔者突然反应过来,CoSENT其实也能作为交互式相似度模型的损失函数。那么它跟标准选择交叉熵相比孰优孰劣呢?本文来补充这部分实验。

点击阅读全文...

27 Jun

哈哈,我的“《圣经》”到了

之前已经稍微提及到了MTW的《引力论》,这本由C.W.麦思纳(Charles W.Misner)、K.S.索恩(Kip S.Thorne)、J.A.惠勒(John Archibald Wheeler)联合编写的广义相对论教材,被誉为引力中的“《圣经》”。自从我看到它的信息开始,我就一直对它念念不忘,一直希望能找到那本台湾翻译的中文版。无奈天朝的各种因素,让我难以如愿。通过翻墙到PChome的全球购物,结合各种手段,我终于买到了这本《圣经》!

引力论1

引力论1

点击阅读全文...

12 Jul

预报日食——当一回天文学家

预报天象,一般只是专业的天文研究人员的事情,我们这些业余的一般只是查找相关信息而已。但是,自从有了计算机(PC)以后,个人预报天象是完全可能的。现在,就发布我在1个多月前写好的一篇关于“日全食”的文章,教大家如何使用Stellarium来精确地预报自己所在地的天象情况。现在,就让我们当一回天文学家。

图片说明:中国日食带,图片来自新浪

图片说明:中国日食带,图片来自新浪

点击阅读全文...

16 Jul

听那“童年”之音

唱出了最真实的童年之音!
唱出了每一个人童年心中的渴望!
唱出了最动听、最真实的音乐!
这是来自心底的呼唤!

http://218.6.130.154/download/other/music/ldy/03.mp3

点击阅读全文...