17 Sep

变分自编码器(四):一步到位的聚类方案

由于VAE中既有编码器又有解码器(生成器),同时隐变量分布又被近似编码为标准正态分布,因此VAE既是一个生成模型,又是一个特征提取器。在图像领域中,由于VAE生成的图片偏模糊,因此大家通常更关心VAE作为图像特征提取器的作用。提取特征都是为了下一步的任务准备的,而下一步的任务可能有很多,比如分类、聚类等。本文来关心“聚类”这个任务。

一般来说,用AE或者VAE做聚类都是分步来进行的,即先训练一个普通的VAE,然后得到原始数据的隐变量,接着对隐变量做一个K-Means或GMM之类的。但是这样的思路的整体感显然不够,而且聚类方法的选择也让我们纠结。本文介绍基于VAE的一个“一步到位”的聚类思路,它同时允许我们完成无监督地完成聚类和条件生成。

理论

一般框架

回顾VAE的loss(如果没印象请参考《变分自编码器(二):从贝叶斯观点出发》):
$$KL\Big(p(x,z)\Big\Vert q(x,z)\Big) = \iint p(z|x)\tilde{p}(x)\ln \frac{p(z|x)\tilde{p}(x)}{q(x|z)q(z)} dzdx\tag{1}$$
通常来说,我们会假设$q(z)$是标准正态分布,$p(z|x),q(x|z)$是条件正态分布,然后代入计算,就得到了普通的VAE的loss。

点击阅读全文...

26 Aug

细水长flow之RealNVP与Glow:流模型的传承与升华

话在开头

上一篇文章《细水长flow之NICE:流模型的基本概念与实现》中,我们介绍了flow模型中的一个开山之作:NICE模型。从NICE模型中,我们能知道flow模型的基本概念和基本思想,最后笔者还给出了Keras中的NICE实现。

本文我们来关心NICE的升级版:RealNVP和Glow。

Glow模型的采样演示(截取自Glow官方博客)

精巧的flow

不得不说,flow模型是一个在设计上非常精巧的模型。总的来看,flow就是想办法得到一个encoder将输入$\boldsymbol{x}$编码为隐变量$\boldsymbol{z}$,并且使得$\boldsymbol{z}$服从标准正态分布。得益于flow模型的精巧设计,这个encoder是可逆的,从而我们可以立马从encoder写出相应的decoder(生成器)出来,因此,只要encoder训练完成,我们就能同时得到decoder,完成生成模型的构建。

为了完成这个构思,不仅仅要使得模型可逆,还要使得对应的雅可比行列式容易计算,为此,NICE提出了加性耦合层,通过多个加性耦合层的堆叠,使得模型既具有强大的拟合能力,又具有单位雅可比行列式。就这样,一种不同于VAE和GAN的生成模型——flow模型就这样出来了,它通过巧妙的构造,让我们能直接去拟合概率分布本身。

点击阅读全文...

1 Sep

玩转Keras之seq2seq自动生成标题

话说自称搞了这么久的NLP,我都还没有真正跑过NLP与深度学习结合的经典之作——seq2seq。这两天兴致来了,决定学习并实践一番seq2seq,当然最后少不了Keras实现了。

seq2seq可以做的事情非常多,我这挑选的是比较简单的根据文章内容生成标题(中文),也可以理解为自动摘要的一种。选择这个任务主要是因为“文章-标题”这样的语料对比较好找,能快速实验一下。

seq2seq简介

所谓seq2seq,就是指一般的序列到序列的转换任务,比如机器翻译、自动文摘等等,这种任务的特点是输入序列和输出序列是不对齐的,如果对齐的话,那么我们称之为序列标注,这就比seq2seq简单很多了。所以尽管序列标注任务也可以理解为序列到序列的转换,但我们在谈到seq2seq时,一般不包含序列标注。

要自己实现seq2seq,关键是搞懂seq2seq的原理和架构,一旦弄清楚了,其实不管哪个框架实现起来都不复杂。早期有一个第三方实现的Keras的seq2seq库,现在作者也已经放弃更新了,也许就是觉得这么简单的事情没必要再建一个库了吧。可以参考的资料还有去年Keras官方博客中写的《A ten-minute introduction to sequence-to-sequence learning in Keras》

点击阅读全文...

8 Sep

“让Keras更酷一些!”:小众的自定义优化器

沿着之前的《“让Keras更酷一些!”:精巧的层与花式的回调》写下去~

今天我们来看一个小众需求:自定义优化器。

细想之下,不管用什么框架,自定义优化器这个需求可谓真的是小众中的小众。一般而言,对于大多数任务我们都可以无脑地直接上Adam,而调参炼丹高手一般会用SGD来调出更好的效果,换言之不管是高手新手,都很少会有自定义优化器的需求。

那这篇文章还有什么价值呢?有些场景下会有一点点作用。比如通过学习Keras中的优化器写法,你可以对梯度下降等算法有进一步的认识,你还可以顺带看到Keras的源码是多么简洁优雅。此外,有时候我们可以通过自定义优化器来实现自己的一些功能,比如给一些简单的模型(例如Word2Vec)重写优化器(直接写死梯度,而不是用自动求导),可以使得算法更快;自定义优化器还可以实现诸如“软batch”的功能。

Keras优化器

我们首先来看Keras中自带优化器的代码,位于:
https://github.com/keras-team/keras/blob/master/keras/optimizers.py

点击阅读全文...

21 Sep

细水长flow之f-VAEs:Glow与VAEs的联姻

这篇文章是我们前几天挂到arxiv上的论文的中文版。在这篇论文中,我们给出了结合流模型(如前面介绍的Glow)和变分自编码器的一种思路,称之为f-VAEs。理论可以证明f-VAEs是囊括流模型和变分自编码器的更一般的框架,而实验表明相比于原始的Glow模型,f-VAEs收敛更快,并且能在更小的网络规模下达到同样的生成效果。

原文地址:《f-VAEs: Improve VAEs with Conditional Flows》

近来,生成模型得到了广泛关注,其中变分自编码器(VAEs)流模型是不同于生成对抗网络(GANs)的两种生成模型,它们亦得到了广泛研究。然而它们各有自身的优势和缺点,本文试图将它们结合起来。

由f-VAEs实现的两个真实样本之间的线性插值

由f-VAEs实现的两个真实样本之间的线性插值

基础

设给定数据集的证据分布为$\tilde{p}(x)$,生成模型的基本思路是希望用如下的分布形式来拟合给定数据集分布
$$\begin{equation}q(x)=\int q(z)q(x|z) dz\end{equation}$$

点击阅读全文...

29 Sep

f-GAN简介:GAN模型的生产车间

今天介绍一篇比较经典的工作,作者命名为f-GAN,他在文章中给出了通过一般的$f$散度来构造一般的GAN的方案。可以毫不夸张地说,这论文就是一个GAN模型的“生产车间”,它一般化的囊括了很多GAN变种,并且可以启发我们快速地构建新的GAN变种(当然有没有价值是另一回事,但理论上是这样)。

局部变分

整篇文章对$f$散度的处理事实上在机器学习中被称为“局部变分方法”,它是一种非常经典且有用的估算技巧。事实上本文将会花大部分篇幅介绍这种估算技巧在$f$散度中的应用结果。至于GAN,只不过是这个结果的基本应用而已。

f散度

首先我们还是对$f$散度进行基本的介绍。所谓$f$散度,是KL散度的一般化:
$$\begin{equation}\mathcal{D}_f(P\Vert Q) = \int q(x) f\left(\frac{p(x)}{q(x)}\right)dx\label{eq:f-div}\end{equation}$$
注意,按照通用的约定写法,括号内是$p/q$而不是$q/p$,大家不要自然而言地根据KL散度的形式以为是$q/p$。

点击阅读全文...

2 Oct

深度学习的互信息:无监督提取特征

随机采样的KNN样本

随机采样的KNN样本

对于NLP来说,互信息是一个非常重要的指标,它衡量了两个东西的本质相关性。本博客中也多次讨论过互信息,而我也对各种利用互信息的文章颇感兴趣。前几天在机器之心上看到了最近提出来的Deep INFOMAX模型,用最大化互信息来对图像做无监督学习,自然也颇感兴趣,研读了一番,就得到了本文。

本文整体思路源于Deep INFOMAX的原始论文,但并没有照搬原始模型,而是按照这自己的想法改动了模型(主要是先验分布部分),并且会在相应的位置进行注明。

我们要做什么

自编码器

特征提取是无监督学习中很重要且很基本的一项任务,常见形式是训练一个编码器将原始数据集编码为一个固定长度的向量。自然地,我们对这个编码器的基本要求是:保留原始数据的(尽可能多的)重要信息

我们怎么知道编码向量保留了重要信息呢?一个很自然的想法是这个编码向量应该也要能还原出原始图片出来,所以我们还训练一个解码器,试图重构原图片,最后的loss就是原始图片和重构图片的mse。这导致了标准的自编码器的设计。后来,我们还希望编码向量的分布尽量能接近高斯分布,这就导致了变分自编码器。

重构的思考

点击阅读全文...

20 Dec

《从动力学角度看优化算法(一):从SGD到动量加速》一文中,我们提出SGD优化算法跟常微分方程(ODE)的数值解法其实是对应的,由此还可以很自然地分析SGD算法的收敛性质、动量加速的原理等等内容。

在这篇文章中,我们继续沿着这个思路,去理解优化算法中的自适应学习率算法。

RMSprop

首先,我们看一个非常经典的自适应学习率优化算法:RMSprop。RMSprop虽然不是最早提出的自适应学习率的优化算法,但是它却是相当实用的一种,它是诸如Adam这样的更综合的算法的基石,通过它我们可以观察自适应学习率的优化算法是怎么做的。

算法概览

一般的梯度下降是这样的:
$$\begin{equation}\boldsymbol{\theta}_{n+1}=\boldsymbol{\theta}_{n} - \gamma \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\end{equation}$$
很明显,这里的$\gamma$是一个超参数,便是学习率,它可能需要在不同阶段做不同的调整。

而RMSprop则是
$$\begin{equation}\begin{aligned}\boldsymbol{g}_{n+1} =& \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\\
\boldsymbol{G}_{n+1}=&\lambda \boldsymbol{G}_{n} + (1 - \lambda) \boldsymbol{g}_{n+1}\otimes \boldsymbol{g}_{n+1}\\
\boldsymbol{\theta}_{n+1}=&\boldsymbol{\theta}_{n} - \frac{\tilde{\gamma}}{\sqrt{\boldsymbol{G}_{n+1} + \epsilon}}\otimes \boldsymbol{g}_{n+1}
\end{aligned}\end{equation}$$

点击阅读全文...