22 Feb

炼钢.vs.做菜:淬火与过冷河

牛腩过冷河

牛腩过冷河

除了数学物理和中国象棋,我闲时也喜欢弄一下吃的。看到各种菜料经过自己的加工变成佳肴,也是一件美不胜收的事情;有时看到同样的菜料能够做出不同款式、不同味道的菜时,更是其乐无穷。作为广东人,我很自豪于其中一句话:“广东人吃所有东西——天上飞的,除了飞机;地上爬的,除了火车;水中游的,除了潜艇”。虽然不免有些夸张,但这句话充分显示了广东人(或者说岭南地区)饮食和烹饪的强大本领。我的厨房技术来源于我妈妈,小时候妈妈在家里做菜,由于是烧柴草生火,所以我得在灶前看好火。于是看火之时也在看妈妈做菜,久而久之,也会学会了一些做菜的方法。而现在,妈妈仍是家里的厨房好手,而我也不时进入厨房,做做自己喜欢吃的东西。谢谢我的好妈妈!

炼钢

本文叫“炼钢.vs.做菜”,这两者基本上是风牛马不相及,不过我却发现它们有一点点相似的技巧。已不记得什么时候了,在一本自然科学的书上,我曾看到过炼钢的两种技术:淬火和退火(后来发现还有正火、回火等,原理类似)。简单来说,淬火是将一块钢铁烧红,然后放进冷水中迅速冷却(也就是加热到一定温度,然后迅速冷却),如此重复,便可使得钢铁变硬,但同时也会更脆;退火则刚刚相反,它是将钢铁烧红后,让它自然冷却(有必要时,想办法降低冷却速度),如此一来,钢铁变软了,也变韧了。正火、回火均与退火类似,只是在细节上不同。通过淬火和退火的适当组合,可以生产出硬度和韧度都适当的钢铁。

点击阅读全文...

15 Mar

不求珍馐百味,但愿开水白菜

开水白菜 (1)

开水白菜 (1)

如果要用做菜来比喻人生的话,我觉得,人生最高的境界之一便是开水白菜。

点击阅读全文...

16 Aug

从费马大定理谈起(三):高斯整数

为了拓展整数的概念,我们需要了解关于环和域这两个代数结构,这些知识在网上或者相应的抽象代数教程中都会有。抽象地提出这两个代数结构,是为了一般地处理不同的数环、数域中的性质。在自然数集$\mathbb{N}$中,可以很方便定义和比较两个数字的大小,并且任意一个自然数的子集,都存在最小元素,这两点综合起来,我们就说$\mathbb{N}$是“良序”的(这也是数学归纳法的基础)。在良序的结构中,很多性质的证明变得很简单,比如算术基本定理。然而,一般的数环、数域并没有这样的“良序”,比如任意两个复数就不能比较大小。因此,一般的、不基于良序的思想就显得更为重要了。

环和域

关于环(Ring)的定义,可以参考维基百科上面的“环(代数)”条目。简单来说,环指的是这样一个集合,它的元素之间可以进行加法和乘法,并满足一些必要的性质,比如运算封闭性、加法可交换性等。而数论中大多数情况下研究的是数环,它指的是集合是数集的情况,并且通常来说,元素间的加法和乘法就是普通的数的加法和乘法。比如所有的实整数就构成一个数环$\mathbb{Z}$,这个数环是无限的;所有的偶整数也构成一个数环$2\mathbb{Z}$;对于素数$p$,在模$p$之下,数集$\{0,1,2,\dots,p-1\}$也构成了一个环,更特别的,它还是一个数域。

点击阅读全文...

18 Mar

倒立单摆之分离频率

Mathieu方程

在文章《有质动力:倒立单摆的稳定性》中,我们分析了通过高频低幅振荡来使得倒立单摆稳定的可能性,并且得出了运动方程
$$l\ddot{\theta}+[h_0 \omega^2 \cos(\omega t)-g]\sin\theta=0$$

由此对单摆频率的下限提出了要求$\omega \gg \sqrt{\frac{g}{h_0}}$。然而,那个下限只不过是必要的,却不是充分的。如果要完整地分析该单摆的运动方程,最理想的方法当然是写出上述常微分方程的解析解。不过很遗憾,我们并没有办法做到这一点。我们只能够采取各种近似方法来求解。近似方法一般指数值计算方法,然后笔者偏爱的是解析方法,也就是说,即使是近似解,也希望能够求出近似的解析解。

点击阅读全文...

11 Jun

用PyPy提高Python脚本执行效率

《两百万前素数之和与前两百万素数之和》中,我们用Python求了前两百万的素数和以及两百万前的素数和,并且得到了在Python 3.3中的执行时间如下:

两百万前的素数之和:
142913828922
time: 2.4048174478605646

前两百万的素数之和:
31381137530481
time: 46.75734807838953

于是想办法提高python脚本的执行效率,我觉得在算法方面,优化空间已经比较小了,于是考虑执行器上的优化。在搜索的无意间我看到了一个名词——Psyco!这是python的一个外部模块,导入后可以加快.py脚本的执行。网上也有《用 Psyco 让 Python 运行得像 C一样快》、《利用 psyco 让 Python 程序执行更快》之类的文章,说明Psyco确实是一个可行的选择,于是就跃跃欲试了,后来了解到Psyco在2012年已经停止开发,只支持到Python 2.4版本,目前它由 PyPy所接替。于是我就下载了PyPy

点击阅读全文...

25 Mar

如何看费曼的讲义和朗道的教程?

本文很荣幸得到了高教社的王超编辑(新浪微博 @朗道集结号 )在微信上的推荐,在此表示十分的感谢。

朗道集结号
朗道、费曼、薛定谔、泡利、狄拉克、温伯格……大师在这里等着你,微信号:ldjjhwx

费曼&朗道

费曼&朗道

事实上,取这个标题,有点狂妄自大、班门弄斧的感觉。原因之一是我自己并非物理专业学生,也没有学好物理。再者,我自己也没有读过多少费曼和朗道的书,谈不上“饱读”费曼朗道,又何以指导大家呢?

但是,结合自己在阅读他们的著作的感受,以及自己学习科学的过程,谈谈我对他们的著作的看法。

什么才是最简洁的方式?

相信不少读者觉得朗道的教程比费曼的讲义要深,感觉朗道的书总有大量的数学公式,而费曼的书则轻松一些。笔者开始也有这样的感觉,但是慢慢读下去,才感到费曼的书甚至比朗道的困难。

在进入讨论之前,我们不妨先想一下:什么才是理解物理的最简洁方式?数学越复杂,就越不好吗?

点击阅读全文...

25 Mar

一本对称闯物理:相对论力学(二)

从这个系列的第一篇文章到本文,已经隔了好多天。其实本文的内容是跟第一篇的内容同时完成的,为什么这么久才更新呢?原因有二,其一是随着春天的到来人也开始懒起来了,颓废呀~;其二,我在思考着规范变换的问题。按照朗道《场论》的逻辑,发展完质点力学理论后,下一步就是发展场论,诸如电磁场、引力场等。但是场论中有个让我比较困惑的东西,即场论存在着“规范不变性”。按照一般观点,我们是将规范不变性看作是电磁场方程的一个结果,即推导出电磁场的方程后,“发现”它具有规范不变性。但是如果用本文的方法,即假定场有这种对称性,然后就可以构建出场方程了。可是,为什么场存在着规范不变性,我还未能思考清楚。据我阅读到的资料来看,这个不变性似乎跟广义不变性有关(电磁场也是,这似乎说明即使在平直时空的电磁场理论中也暗示了广义不变性?)。还有,似乎这个不变性需要在量子场论中才能得到比较满意的解释,可是这样的话,就离我还很远了。

好吧,我们还是先回到相对论力学的推导中。

“无”中生有

上一篇文章我们已经构建了相对论力学的无穷小生成元,并进行了延拓。我已经说过,仅需要无穷小的变换形式,就可以构建出完成的相对论力学定律出来(当然这需要一些比较“显然”的假设)。这是个几乎从“无”到有的过程,也是本文标题的含义所在。另一方面,这种从局部到整体的可能性,也给我们带来一些启示:假如方法是普适的,那么可以由此构造出我们需要的物理定律来,包括电磁场、引力场方程等。(当然,我离这个目标还有点远。)

点击阅读全文...

21 Apr

数独的自动推理

写在前面:作为离散数学的实验作业,我选择了研究数独。经过测试发现,数独的自动推理还不算难,我把两种常规的推理思路转化为了计算机代码,并结合了随机性推导,得到了一个解题能力还不错的数独程序。事实上,本文的程序还可以进一步优化,以得到更高能力的数独程序(只需要整理一下代码,加上几个循环和判断即可),但是我实在太懒,没有动力继续弄下去了,就这样先和大家分享吧。最后,笔者认为本文的算法是更接近我们的思维的算法。

数独简介

历史

相传数独源起于拉丁方阵(Latin Square),1970年代在美国发展,改名为数字拼图(Number Place)、之后流传至日本并发扬光大,以数学智力游戏智力拼图游戏发表。在1984年一本游戏杂志《パズル通信ニコリ》正式把它命名为数独,意思是“在每一格只有一个数字”。后来一位前任香港高等法院的新西兰籍法官高乐德(Wayne Gould)在1997年3月到日本东京旅游时,无意中发现了。他首先在英国的《泰晤士报》上发表,不久其他报纸也发表,很快便风靡全英国,之后他用了6年时间编写了电脑程式,并将它放在网站上,使这个游戏很快在全世界流行。

台湾于2005年5月由“中国时报”首度引进, 且每日连载, 亦造成很大的回响。台湾数独发展协会(Taiwan Sudoku Association, 简称 TSA)亦为世界解谜联盟会员。香港是在2005年7月30日由AM730在创刊时引入数独。中国大陆是在2007年2月28日正式引入数独。北京晚报智力休闲数独俱乐部(数独联盟前身)在新闻大厦举行加入世界谜题联合会的颁证仪式,成为世界谜题联合会的39个成员之一。(引用自“中文维基百科”: http://zh.wikipedia.org/wiki/数独

点击阅读全文...