17 Apr

Lamost被冠名为“郭守敬望远镜”

2010年4月17日上午,LAMOST望远镜冠名仪式正式举行。LAMOST望远镜被正式冠名为“郭守敬望远镜”。 详细情况大家参见近日刊发的消息。

中科院“郭守敬望远镜”

中科院“郭守敬望远镜”

点击阅读全文...

18 Apr

行星的逆行,顺行和留(计算公式)

火星轨迹模拟

火星轨迹模拟

由于地球自西向东自转和公转,所以地球上所看到的绝大多数星体都是东升西落的,所以我们把星体在天空中自东向西的运动称为“顺行”,自西向东被称为“逆行”。由于地球和行星的共同运动,地外外行星在“冲”的前后一段时间内会出现“逆行”的现象(地内行星则相反)。而逆行与顺行之间的那一天(应该说那一时刻),就被称为“留”。也就是说,行星“留”过后,行星在天空中的运动方向由顺行变为逆行,或者由逆行变为顺行。

点击阅读全文...

20 Mar

《方程与宇宙》:二体问题的来来去去(一)

二体问题的轨道模拟

二体问题的轨道模拟

为了让大家能够查询到“天体力学”方面的内容,同时锻炼我的表达和计算能力,BoJone构思了《方程与宇宙》这个主题,主要是写一些关于使用数学相对深入地讨论一些天文问题。其实我一直觉得,不用公式是无法完美地描述科学的(当然也不能纯公式),我记得霍金的《时间简史》以及《果壳中的宇宙》等之类的书,都力求不用或者尽可能少用数学公式来表达自己的观点。这种模式对于对于公众来说是很好的,但是对于希望深入研究的朋友来说却难以进行。所以我主张:宇宙是算出来的!

这个主题每一个字都是由BoJone敲击出来的,其中包括引用了《天体力学引论》里面的一些内容,以及加入了BoJone个人的一些见解。由于篇幅长及时间有限问题,BoJone打算分若干次撰写发布,并且尽可能写得通俗一点,力求让有一点微积分基础的朋友就可以弄懂。这里首先发布第一部分。由于时间匆忙等原因,可能会出现一些疏忽,欢迎大家挑错!

点击阅读全文...

21 Mar

地球“黑暗”的一小时

随着科协技术的不断进步和经济文化的高速发展,对于久居城市人们来说,璀璨繁星和美丽银河早已是儿时的记忆,再不敢奢求,夜间严重的光污染使得大家鲜有机会欣赏到它们。每年世界自然基金会活动号召人们每年3月最后一个星期六 20:30-21:30熄灭电灯、关闭电源,用1个小时的短暂黑暗,换取明天更多的绿色希望,展现公众携手保护生态环境的信心和决心。这一活动正好可以还城市美丽的星空,与众多天文爱好者的心愿不谋而合!

2010年3月27日21点星空

2010年3月27日21点星空

点击阅读全文...

23 Mar

【通知转载】国家天文台信息技术类人才招聘

文章来源:国家天文台

国家天文台LAMOST大科学工程面向全社会招聘信息技术类人才若干名,主要从事数据密集型天文学研究、数据库设计开发、天文应用软件服务开发、数据处理、数据挖掘、数值模拟、高性能计算、算法优化、网站网页设计维护、天文数据整理与管理、网络科普教育等工作。大天区面积多目标光纤光谱天文望远镜(LAMOST)是一项国家重大科学工程项目。该工程项目于2008年底竣工,2009年6月通过国家验收,正处于观测试运行阶段。LAMOST天文望远镜是我国已建成的最大、最先进的天文观测设备,是世界上光谱观测效率最高的望远镜,4米口径5度视场,每次可观测4000个目标,每晚可观测数万个目标,获得数十GB的数据,每年可获得数TB的科学数据。如何处理、分析、管理、发布、挖掘如此海量的数据,就是诚聘的上述人才所要面临的挑战。

点击阅读全文...

27 Mar

科学空间:2010年4月重要天象

信使号的水星假色影像(维基百科)

信使号的水星假色影像(维基百科)

进入4月,我们的天象剧场又逐渐热闹起来。9日的水星东大距,是全年水星为数不多的较佳观测时机之一。4月下旬天琴座流星雨也将如约而至,它的到来会使天文爱好者们的春夜观星计划更加丰富多彩。本月,火星、水星、土星,都是星空的主角!

点击阅读全文...

3 Apr

《方程与宇宙》:抛物线与双曲线轨道(三)

圆锥曲线

圆锥曲线

经过上两回的讨论,我们已经基本摸清了二体问题的运动情况。我们已经找到了二体问题在轨道为椭圆的时候的所有积分,给出了“活力公式”等常用公式的证明,并且留下了一些没有解答的问题。那就是在轨道为抛物线和双曲线时的最后一个积分还没有找出来,现在我们解决这两个问题。其中的关键积分依旧是
$\dot{r}^2={2\mu}/r-{\mu a(1-e^2)}/r^2-\frac{\mu}{a}$——(12)

点击阅读全文...

4 Apr

关于自由落体公式的简单修正

自由落体公式-示意图

自由落体公式-示意图

自由落体的一般定义是:只考虑吸引天体和被吸引天体的引力因素,忽略其他的运动和大气摩擦等因素,物体从静止(相对于吸引天体)开始接近吸引天体的运动。根据这个定义,假设地球为一个均匀球体,半径为r,质量为M,物体从距离地表h高度处自由落下。求落到地面的时间t,或者根据时间t求h。

令s为t时刻物体左右下落的物体与地表的距离,忽略物体的小质量,那么可以列出微分方程:
$$\frac{d^2 s}{dt^2}=-\frac{GM}{(r+s)^2}\tag{1}$$并且初始条件是$t=0,s=h,\dot{s}=v=0$

在实际应用中,我们不必求出这道微分方程的精确解,因为这个解极其麻烦,在之前曾经讨论过。我们只需要求出一个有足够精确度的近似解就行。

点击阅读全文...