SimBERTv2来了!融合检索和生成的RoFormer-Sim模型
By 苏剑林 | 2021-06-11 | 111711位读者 | 引用去年我们放出了SimBERT模型,它算是我们开源的比较成功的模型之一,获得了不少读者的认可。简单来说,SimBERT是一个融生成和检索于一体的模型,可以用来作为句向量的一个比较高的baseline,也可以用来实现相似问句的自动生成,可以作为辅助数据扩增工具使用,这一功能是开创性的。
近段时间,我们以RoFormer为基础模型,对SimBERT相关技术进一步整合和优化,最终发布了升级版的RoFormer-Sim模型。
简介
RoFormer-Sim是SimBERT的升级版,我们也可以通俗地称之为“SimBERTv2”,而SimBERT则默认是指旧版。从外部看,除了基础架构换成了RoFormer外,RoFormer-Sim跟SimBERT没什么明显差别,事实上它们主要的区别在于训练的细节上,我们可以用两个公式进行对比:
\begin{array}{c}
\text{SimBERT} = \text{BERT} + \text{UniLM} + \text{对比学习} \\[5pt]
\text{RoFormer-Sim} = \text{RoFormer} + \text{UniLM} + \text{对比学习} + \text{BART} + \text{蒸馏}\\
\end{array}
对比学习可以使用梯度累积吗?
By 苏剑林 | 2021-06-17 | 62037位读者 | 引用在之前的文章《用时间换取效果:Keras梯度累积优化器》中,我们介绍过“梯度累积”,它是在有限显存下实现大batch_size效果的一种技巧。一般来说,梯度累积适用的是loss是独立同分布的场景,换言之每个样本单独计算loss,然后总loss是所有单个loss的平均或求和。然而,并不是所有任务都满足这个条件的,比如最近比较热门的对比学习,每个样本的loss还跟其他样本有关。
那么,在对比学习场景,我们还可以使用梯度累积来达到大batch_size的效果吗?本文就来分析这个问题。
简介
一般情况下,对比学习的loss可以写为
\begin{equation}\mathcal{L}=-\sum_{i,j=1}^b t_{i,j}\log p_{i,j} = -\sum_{i,j=1}^b t_{i,j}\log \frac{e^{s_{i,j}}}{\sum\limits_j e^{s_{i,j}}}=-\sum_{i,j=1}^b t_{i,j}s_{i,j} + \sum_{i=1}^b \log\sum_{j=1}^b e^{s_{i,j}}\label{eq:loss}\end{equation}
这里的$b$是batch_size;$t_{i,j}$是事先给定的标签,满足$t_{i,j}=t_{j,i}$,它是一个one hot矩阵,每一列只有一个1,其余都为0;而$s_{i,j}$是样本$i$和样本$j$的相似度,满足$s_{i,j}=s_{j,i}$,一般情况下还有个温度参数,这里假设温度参数已经整合到$s_{i,j}$中,从而简化记号。模型参数存在于$s_{i,j}$中,假设为$\theta$。
bert4keras在手,baseline我有:CLUE基准代码
By 苏剑林 | 2021-10-31 | 78938位读者 | 引用CLUE(Chinese GLUE)是中文自然语言处理的一个评价基准,目前也已经得到了较多团队的认可。CLUE官方Github提供了tensorflow和pytorch的baseline,但并不易读,而且也不方便调试。事实上,不管是tensorflow还是pytorch,不管是CLUE还是GLUE,笔者认为能找到的baseline代码,都很难称得上人性化,试图去理解它们是一件相当痛苦的事情。
所以,笔者决定基于bert4keras实现一套CLUE的baseline。经过一段时间的测试,基本上复现了官方宣称的基准成绩,并且有些任务还更优。最重要的是,所有代码尽量保持了清晰易读的特点,真·“Deep Learning for Humans”。
代码简介
下面简单介绍一下该代码中各个任务baseline的构建思路。在阅读文章和代码之前,请读者自行先观察一下每个任务的数据格式,这里不对任务数据进行详细介绍。
用开源的人工标注数据来增强RoFormer-Sim
By 苏剑林 | 2021-07-19 | 142417位读者 | 引用大家知道,从SimBERT到SimBERTv2(RoFormer-Sim),我们算是为中文文本相似度任务建立了一个还算不错的基准模型。然而,SimBERT和RoFormer-Sim本质上都只是“弱监督”模型,跟“无监督”类似,我们不能指望纯弱监督的模型能达到完美符合人的认知效果。所以,为了进一步提升RoFormer-Sim的效果,我们尝试了使用开源的一些标注数据来辅助训练。本文就来介绍我们的探索过程。
有的读者可能想:有监督有啥好讲的?不就是直接训练么?说是这么说,但其实并没有那么“显然易得”,还是有些“雷区”的,所以本文也算是一份简单的“扫雷指南”吧。
前情回顾
笔者发现,自从SimBERT发布后,读者问得最多的问题大概是:
为什么“我喜欢北京”跟“我不喜欢北京”相似度这么高?它们不是意思相反吗?
概率视角下的线性模型:逻辑回归有解析解吗?
By 苏剑林 | 2021-07-22 | 79280位读者 | 引用我们知道,线性回归是比较简单的问题,它存在解析解,而它的变体逻辑回归(Logistic Regression)却没有解析解,这不能不说是一个遗憾。因为逻辑回归虽然也叫“回归”,但它实际上是用于分类问题的,而对于很多读者来说分类比回归更加常见。准确来说,我们说逻辑回归没有解析解,说的是“最大似然估计下逻辑回归没有解析解”。那么,这是否意味着,如果我们不用最大似然估计,是否能找到一个可用的解析解呢?
本文将会从非最大似然的角度,推导逻辑回归的一个解析解,简单的实验表明它效果不逊色于梯度下降求出来的最大似然解。此外,这个解析解还易于推广到单层Softmax多分类模型。
从三角不等式到Margin Softmax
By 苏剑林 | 2021-09-01 | 34377位读者 | 引用在《基于GRU和AM-Softmax的句子相似度模型》中我们介绍了AM-Softmax,它是一种带margin的softmax,通常用于用分类做检索的场景。当时通过图示的方式简单说了一下引入margin是因为“分类与排序的不等价性”,但没有比较定量地解释这种不等价性的来源。
在这篇文章里,我们来重提这个话题,从距离的三角不等式的角度来推导和理解margin的必要性。
三角不等式
平时,我们说的距离一般指比较直观的“欧氏距离”,但在数学上距离,距离又叫“度量”,它有公理化的定义,是指定义在某个集合上的二元函数$d(x,y)$,满足:
线性Transformer应该不是你要等的那个模型
By 苏剑林 | 2021-08-09 | 103725位读者 | 引用在本博客中,我们已经多次讨论过线性Attention的相关内容。介绍线性Attention的逻辑大体上都是:标准Attention具有$\mathcal{O}(n^2)$的平方复杂度,是其主要的“硬伤”之一,于是我们$\mathcal{O}(n)$复杂度的改进模型,也就是线性Attention。有些读者看到线性Attention的介绍后,就一直很期待我们发布基于线性Attention的预训练模型,以缓解他们被BERT的算力消耗所折腾的“死去活来”之苦。
然而,本文要说的是:抱有这种念头的读者可能要失望了,标准Attention到线性Attention的转换应该远远达不到你的预期,而BERT那么慢的原因也并不是因为标准Attention的平方复杂度。
BERT之反思
按照直观理解,平方复杂度换成线性复杂度不应该要“突飞猛进”才对嘛?怎么反而“远远达不到预期”?出现这个疑惑的主要原因,是我们一直以来都没有仔细评估一下常规的Transformer模型(如BERT)的整体计算量。
FlatNCE:小批次对比学习效果差的原因竟是浮点误差?
By 苏剑林 | 2021-07-26 | 46868位读者 | 引用自SimCLR在视觉无监督学习大放异彩以来,对比学习逐渐在CV乃至NLP中流行了起来,相关研究和工作越来越多。标准的对比学习的一个广为人知的缺点是需要比较大的batch_size(SimCLR在batch_size=4096时效果最佳),小batch_size的时候效果会明显降低,为此,后续工作的改进方向之一就是降低对大batch_size的依赖。那么,一个很自然的问题是:标准的对比学习在小batch_size时效果差的原因究竟是什么呢?
近日,一篇名为《Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive Learners With FlatNCE》对此问题作出了回答:因为浮点误差。看起来真的很让人难以置信,但论文的分析确实颇有道理,并且所提出的改进FlatNCE确实也工作得更好,让人不得不信服。
细微之处
接下来,笔者将按照自己的理解和记号来介绍原论文的主要内容。对比学习(Contrastive Learning)就不帮大家详细复习了,大体上来说,对于某个样本$x$,我们需要构建$K$个配对样本$y_1,y_2,\cdots,y_K$,其中$y_t$是正样本而其余都是负样本,然后分别给每个样本对$(x, y_i)$打分,分别记为$s_1,s_2,\cdots,s_K$,对比学习希望拉大正负样本对的得分差,通常直接用交叉熵作为损失:
\begin{equation}-\log \frac{e^{s_t}}{\sum\limits_i e^{s_i}} = \log \left(\sum_i e^{s_i}\right) - s_t = \log \left(1 + \sum_{i\neq t} e^{s_i - s_t}\right)\end{equation}
最近评论