细水长flow之RealNVP与Glow:流模型的传承与升华
By 苏剑林 | 2018-08-26 | 311996位读者 | 引用话在开头
上一篇文章《细水长flow之NICE:流模型的基本概念与实现》中,我们介绍了flow模型中的一个开山之作:NICE模型。从NICE模型中,我们能知道flow模型的基本概念和基本思想,最后笔者还给出了Keras中的NICE实现。
本文我们来关心NICE的升级版:RealNVP和Glow。
精巧的flow
不得不说,flow模型是一个在设计上非常精巧的模型。总的来看,flow就是想办法得到一个encoder将输入$\boldsymbol{x}$编码为隐变量$\boldsymbol{z}$,并且使得$\boldsymbol{z}$服从标准正态分布。得益于flow模型的精巧设计,这个encoder是可逆的,从而我们可以立马从encoder写出相应的decoder(生成器)出来,因此,只要encoder训练完成,我们就能同时得到decoder,完成生成模型的构建。
为了完成这个构思,不仅仅要使得模型可逆,还要使得对应的雅可比行列式容易计算,为此,NICE提出了加性耦合层,通过多个加性耦合层的堆叠,使得模型既具有强大的拟合能力,又具有单位雅可比行列式。就这样,一种不同于VAE和GAN的生成模型——flow模型就这样出来了,它通过巧妙的构造,让我们能直接去拟合概率分布本身。
玩转Keras之seq2seq自动生成标题
By 苏剑林 | 2018-09-01 | 367549位读者 | 引用话说自称搞了这么久的NLP,我都还没有真正跑过NLP与深度学习结合的经典之作——seq2seq。这两天兴致来了,决定学习并实践一番seq2seq,当然最后少不了Keras实现了。
seq2seq可以做的事情非常多,我这挑选的是比较简单的根据文章内容生成标题(中文),也可以理解为自动摘要的一种。选择这个任务主要是因为“文章-标题”这样的语料对比较好找,能快速实验一下。
seq2seq简介
所谓seq2seq,就是指一般的序列到序列的转换任务,比如机器翻译、自动文摘等等,这种任务的特点是输入序列和输出序列是不对齐的,如果对齐的话,那么我们称之为序列标注,这就比seq2seq简单很多了。所以尽管序列标注任务也可以理解为序列到序列的转换,但我们在谈到seq2seq时,一般不包含序列标注。
要自己实现seq2seq,关键是搞懂seq2seq的原理和架构,一旦弄清楚了,其实不管哪个框架实现起来都不复杂。早期有一个第三方实现的Keras的seq2seq库,现在作者也已经放弃更新了,也许就是觉得这么简单的事情没必要再建一个库了吧。可以参考的资料还有去年Keras官方博客中写的《A ten-minute introduction to sequence-to-sequence learning in Keras》。
“让Keras更酷一些!”:小众的自定义优化器
By 苏剑林 | 2018-09-08 | 87303位读者 | 引用沿着之前的《“让Keras更酷一些!”:精巧的层与花式的回调》写下去~
今天我们来看一个小众需求:自定义优化器。
细想之下,不管用什么框架,自定义优化器这个需求可谓真的是小众中的小众。一般而言,对于大多数任务我们都可以无脑地直接上Adam,而调参炼丹高手一般会用SGD来调出更好的效果,换言之不管是高手新手,都很少会有自定义优化器的需求。
那这篇文章还有什么价值呢?有些场景下会有一点点作用。比如通过学习Keras中的优化器写法,你可以对梯度下降等算法有进一步的认识,你还可以顺带看到Keras的源码是多么简洁优雅。此外,有时候我们可以通过自定义优化器来实现自己的一些功能,比如给一些简单的模型(例如Word2Vec)重写优化器(直接写死梯度,而不是用自动求导),可以使得算法更快;自定义优化器还可以实现诸如“软batch”的功能。
Keras优化器
我们首先来看Keras中自带优化器的代码,位于:
https://github.com/keras-team/keras/blob/master/keras/optimizers.py
深度学习的互信息:无监督提取特征
By 苏剑林 | 2018-10-02 | 278623位读者 | 引用对于NLP来说,互信息是一个非常重要的指标,它衡量了两个东西的本质相关性。本博客中也多次讨论过互信息,而我也对各种利用互信息的文章颇感兴趣。前几天在机器之心上看到了最近提出来的Deep INFOMAX模型,用最大化互信息来对图像做无监督学习,自然也颇感兴趣,研读了一番,就得到了本文。
本文整体思路源于Deep INFOMAX的原始论文,但并没有照搬原始模型,而是按照这自己的想法改动了模型(主要是先验分布部分),并且会在相应的位置进行注明。
我们要做什么
自编码器
特征提取是无监督学习中很重要且很基本的一项任务,常见形式是训练一个编码器将原始数据集编码为一个固定长度的向量。自然地,我们对这个编码器的基本要求是:保留原始数据的(尽可能多的)重要信息。
我们怎么知道编码向量保留了重要信息呢?一个很自然的想法是这个编码向量应该也要能还原出原始图片出来,所以我们还训练一个解码器,试图重构原图片,最后的loss就是原始图片和重构图片的mse。这导致了标准的自编码器的设计。后来,我们还希望编码向量的分布尽量能接近高斯分布,这就导致了变分自编码器。
重构的思考
从动力学角度看优化算法(二):自适应学习率算法
By 苏剑林 | 2018-12-20 | 48279位读者 | 引用在《从动力学角度看优化算法(一):从SGD到动量加速》一文中,我们提出SGD优化算法跟常微分方程(ODE)的数值解法其实是对应的,由此还可以很自然地分析SGD算法的收敛性质、动量加速的原理等等内容。
在这篇文章中,我们继续沿着这个思路,去理解优化算法中的自适应学习率算法。
RMSprop
首先,我们看一个非常经典的自适应学习率优化算法:RMSprop。RMSprop虽然不是最早提出的自适应学习率的优化算法,但是它却是相当实用的一种,它是诸如Adam这样的更综合的算法的基石,通过它我们可以观察自适应学习率的优化算法是怎么做的。
算法概览
一般的梯度下降是这样的:
$$\begin{equation}\boldsymbol{\theta}_{n+1}=\boldsymbol{\theta}_{n} - \gamma \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\end{equation}$$
很明显,这里的$\gamma$是一个超参数,便是学习率,它可能需要在不同阶段做不同的调整。
而RMSprop则是
$$\begin{equation}\begin{aligned}\boldsymbol{g}_{n+1} =& \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\\
\boldsymbol{G}_{n+1}=&\lambda \boldsymbol{G}_{n} + (1 - \lambda) \boldsymbol{g}_{n+1}\otimes \boldsymbol{g}_{n+1}\\
\boldsymbol{\theta}_{n+1}=&\boldsymbol{\theta}_{n} - \frac{\tilde{\gamma}}{\sqrt{\boldsymbol{G}_{n+1} + \epsilon}}\otimes \boldsymbol{g}_{n+1}
\end{aligned}\end{equation}$$
深度学习中的Lipschitz约束:泛化与生成模型
By 苏剑林 | 2018-10-07 | 151981位读者 | 引用前言:去年写过一篇WGAN-GP的入门读物《互怼的艺术:从零直达WGAN-GP》,提到通过梯度惩罚来为WGAN的判别器增加Lipschitz约束(下面简称“L约束”)。前几天遐想时再次想到了WGAN,总觉得WGAN的梯度惩罚不够优雅,后来也听说WGAN在条件生成时很难搞(因为不同类的随机插值就开始乱了...),所以就想琢磨一下能不能搞出个新的方案来给判别器增加L约束。
闭门造车想了几天,然后发现想出来的东西别人都已经做了,果然是只有你想不到,没有别人做不到。主要包含在这两篇论文中:《Spectral Norm Regularization for Improving the Generalizability of Deep Learning》和《Spectral Normalization for Generative Adversarial Networks》。
所以这篇文章就按照自己的理解思路,对L约束相关的内容进行简单的介绍。注意本文的主题是L约束,并不只是WGAN。它可以用在生成模型中,也可以用在一般的监督学习中。
L约束与泛化
扰动敏感
记输入为$x$,输出为$y$,模型为$f$,模型参数为$w$,记为
$$\begin{equation}y = f_w(x)\end{equation}$$
很多时候,我们希望得到一个“稳健”的模型。何为稳健?一般来说有两种含义,一是对于参数扰动的稳定性,比如模型变成了$f_{w+\Delta w}(x)$后是否还能达到相近的效果?如果在动力学系统中,还要考虑模型最终是否能恢复到$f_w(x)$;二是对于输入扰动的稳定性,比如输入从$x$变成了$x+\Delta x$后,$f_w(x+\Delta x)$是否能给出相近的预测结果。读者或许已经听说过深度学习模型存在“对抗攻击样本”,比如图片只改变一个像素就给出完全不一样的分类结果,这就是模型对输入过于敏感的案例。
几年前,笔者曾经以自己对矩阵的粗浅理解写了一个“理解矩阵”系列,其中有一篇《为什么只有方阵有行列式?》讨论了非方阵的行列式问题,里边给出了“非方针的行列式不好看”和“方阵的行列式就够了”的观点。本文来再次思考这个问题。
首先回顾方阵的行列式,其实行列式最重要的价值在于它的几何意义:
n维方阵的行列式的绝对值,等于它的各个行(或列)向量所张成的n维立体的超体积。
这个几何意义是行列式的一切重要性的源头,相关的讨论可以参考《行列式的点滴》,它也是我们讨论非方阵行列式的基础。
分析
对于方阵$\boldsymbol{A}_{n\times n}$来说,可以将它看成$n$个行向量的组合,也可以看成$n$个列向量的组合,不管是哪一种,行列式的绝对值都等于这$n$个向量所张成的$n$维立体的超体积。换句话说,对于方阵来说,行、列向量的区分不改变行列式。
对于非方阵$\boldsymbol{B}_{n \times k}$就不一样了,不失一般性,假设$n > k$。我们可以将它看成$n$个$k$维行向量的组合,也可以看成$k$个$n$维列向量的组合。非方针的行列式,应该也具有同样含义,即它们所张成的立体的超体积。
我们来看第一种情况,如果看成$n$个$k$维行向量,那么就得视为这$n$个向量张成的$n$维体的超体积了,但是要注意$n > k$,因此这$n$个向量必然线性相关,因此它们根本就张不成一个$n$维体,也许是一个$n-1$维体甚至更低,这样一来,它的$n$维体的超体积自然为0。
但是第二种情况就没有那么平凡了。如果看成$k$个$n$维列向量,那么这$k$个向量虽然是$n$维的,但它们张成的是一个$k$维体,这$k$维体的超体积未必为0。我们就以这个非平凡的体积作为非方阵行列式的定义好了。
基于CNN和序列标注的对联机器人
By 苏剑林 | 2019-01-14 | 43854位读者 | 引用缘起
前几天在量子位公众号上看到了《这个脑洞清奇的对联AI,大家都玩疯了》一文,觉得挺有意思,难得的是作者还整理并公开了数据集,所以决定自己尝试一下。
动手
“对对联”,我们可以看成是一个句子生成任务,可以用seq2seq完成,跟笔者之前写的《玩转Keras之seq2seq自动生成标题》一样,稍微修改一下输入即可。上面提到的文章所用的方法也是seq2seq,可见这算是标准做法了。
最近评论