力学系统及其对偶性(三)
By 苏剑林 | 2013-11-15 | 17371位读者 | 引用在上一篇文章中,我已经初步地从最小作用量原理的角度来观察对偶定律的表现。虽然那是一种便捷有效的方法,但是还是给我们流下了一些遗憾。上一节是从几何形式的作用量原理出发的,而没有在一般形式的作用量框架下讨论。因为如果在$S=\int Ldt=\int (T-U)dt$的形式下讨论坐标变换问题会出现困难,困难源于我们进行了变换$d\tau=|z|^2 dt$,这导致了时间和空间的耦合,变分不能简单地进行。但是,这并非无法解决的问题。我们还是可以在基本的作用量原理之下讨论变换问题。下面将对此问题进行讨论。
变分中的变量代换
考虑一个一般的保守系统的作用量:
$$S=\int_{t_1}^{t_2} L(q,\frac{dq}{dt})dt$$
一维弹簧的运动(上)
By 苏剑林 | 2014-03-11 | 28491位读者 | 引用TeaForN:让Teacher Forcing更有“远见”一些
By 苏剑林 | 2020-10-27 | 39800位读者 | 引用Teacher Forcing是Seq2Seq模型的经典训练方式,而Exposure Bias则是Teacher Forcing的经典缺陷,这对于搞文本生成的同学来说应该是耳熟能详的事实了。笔者之前也曾写过博文《Seq2Seq中Exposure Bias现象的浅析与对策》,初步地分析过Exposure Bias问题。
本文则介绍Google新提出的一种名为“TeaForN”的缓解Exposure Bias现象的方案,来自论文《TeaForN: Teacher-Forcing with N-grams》,它通过嵌套迭代的方式,让模型能提前预估到后$N$个token(而不仅仅是当前要预测的token),其处理思路上颇有可圈可点之处,值得我们学习。
(注:为了尽量跟本博客旧文章保持一致,本文的记号与原论文的记号有所不同,请大家以理解符号含义为主,不要强记符号形式。)
《向量》系列——5.平面向量微分方程与复数
By 苏剑林 | 2010-10-03 | 20526位读者 | 引用昨天在研究一个最优化问题时,遇到了一个这样的积分:
$$\int \frac{1}{\cos^3 \theta} d\theta$$
然后就顺便研究了一下这种类型的函数的积分。一般来讲,这类积分可以写成$\int cos^n \theta d\theta$或$\int sin^n \theta d\theta$,其中n是一个整数。
首先我们来解决n=1的情况,我们很容易就有$\int cos\theta d\theta=sin\theta +C$或$\int sin\theta d\theta=-cos\theta +C$,这是一个基本的结果。
如果n是大于1的正整数,那么可以用递推的方法来搞定:
费曼积分法——积分符号内取微分(2)
By 苏剑林 | 2012-06-12 | 94455位读者 | 引用上一篇文章我对“费曼积分法”做了一个简单的介绍,并通过举例来初步展示了它的操作步骤。但是,要了解一个方法,除了知道它能够干什么之外,还必须了解它的原理和方法,这样我们才能够更好地掌握它。因此,我们需要建立“积分符号内取微分”的一般理论,为进一步的应用奠基。
一般原理
我们记
$$G(a)=\int_{m(a)}^{n(a)} f(x,a)dx$$
在这里,f(x,a)是带有参数a的关于x的函数,而积分区间是关于参数a的两个函数,这样的积分也叫变限积分,可以理解为是普通定积分的推广。我们记F(x,a)为f(x,a)的原函数,也就是说$\frac{\partial F(x,a)}{\partial x}=f(x,a)$,那么按照微积分基本定理,我们就有:
$$G(a)=F(n(a),a)-F(m(a),a)$$
费曼积分法——积分符号内取微分(4)
By 苏剑林 | 2012-06-26 | 72986位读者 | 引用趁着早上有空,就赶紧把这篇文章写好吧。下午高考成绩要公布了,公布后也许又会有一段时间忙碌了。这应该是“费曼积分法”系列最后一篇文章了。它主要讲的还是费曼积分法的一个实例。不同的是,这是BoJone首次独立地用费曼积分法解决了一个问题。之前提到的一些例子,都是书本提供并结合了提示,BoJone才把它们算出来的。所以这个问题有着点点纪念意义。
数学研发论坛上wayne曾求证这样的命题:
$\int_0^{\infty}\frac{f(x,2m-1)-\sin x}{x^{2m+1}}dx$其中,f(x,2m-1)表示sinx的2m-1阶泰勒展开
如m=1时,
$$\int_0^{\infty}\frac{x-\sin x}{x^3}dx$$
m=2时
$$\int_0^{\infty}\frac{x-\frac{x^3}{6}-\sin x}{x^5}dx$$
借助软件我发现结果是:
$\frac{\pi(-1)^{m-1}}{2(2m)!}$
复分析学习1:揭示微分与积分的联系
By 苏剑林 | 2012-08-02 | 34818位读者 | 引用笔者这段时间对复数尤其感兴趣,当然,严格来讲应该是复变函数内容,其中一个原因是通过它,我们可以把一些看似毫不相关的内容联系了起来,体现了数学的简洁美和统一美。我相当有兴趣的其中一个内容是实分析中的泰勒级数和傅里叶级数。这两者都是关于某个函数的级数展开式,其中泰勒级数是用于一般函数展开的,其各项系数通过求n阶导数得到;傅里叶级数的对象是周期函数,其各项系数是通过定积分求得的。在实数世界里,两者毫不相关,但是,复分析却告诉我们:它们只是同一个东西!只是将其在不同的角度“投影”到实数世界里,就产生了不同的“物像”,以至于我们认为它们是不同东西而已。
我们直接来看一个变魔术般的运算:
我们知道,在实数世界里头,我们有
$ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...$,其中$|x| < 1$
最近评论