科学空间:2011年9月重要天象
By 苏剑林 | 2011-08-27 | 17233位读者 | 引用秋高气爽的九月,天象剧场也逐渐热闹起来。秋分前后的夜晚,是一年中偶发流星出现最为频繁的时段。尤其是到了后半夜,如果赶上晴天,每小时看到二三十颗偶发流星都不成问题。与此同时,秋夜星空也不乏看点,美丽的仙女座星系M31肉眼可见,三角座星系M33等深空天体也是天文爱好者热衷的观测目标。除此之外,天王星将于本月迎来冲日,观测条件较好。
9月12日,我们又会迎来今年最重要的节日之一——中秋节。届时,不论您是身在他乡为“异客”,或是在家陪伴着亲人,BoJone都愿与你一起“举头望明月”。在此提前预祝大家中秋快乐、美满、团圆!
有理直角三角形的面积能否为整数?
By 苏剑林 | 2011-08-21 | 37699位读者 | 引用这是一个古老而有趣的问题,但在引入这个问题之前,我们首先来看一个简单的问题:
整数边直角三角形的面积能否为一个完全平方数?
答案是不能。我们可以举一些例子来检验一下,例如边长为3,4,5的直角三角形面积为6,6不是一个平方数;再如边长为5,12,13的直角三角形面积为30,30也不是一个平方数...当然,数学的最近目的是要求严格证明,而不是简单举例,否则就只得称为不完全归纳,这样得出来的是一个猜想,而不是“定理”,就好象著名的“哥德巴赫猜想”...本文我们将试图证明这个命题。
我们稍后还会发现,这个问题和以下问题是等价的:
是否存在一个面积为1的三边长都是有理数的直角三角形?
更让人意外的是,这个问题也等价于方程$x^4+y^4=z^4$并没有整数解,换句话说,我们要证明n=4时的“费马大定理”!
[欧拉数学]素数有无穷多个的两个证明
By 苏剑林 | 2011-10-02 | 71085位读者 | 引用素数是数的基本单元,就如同高楼大厦中的砖块一样。显然,素数有无穷多个是数论研究价值的前提。不然,数的研究就局限在有限个素数之内,那么很多数字就会失去了它们的魅力。就好比只有有限块砖头,就不能创建出建筑的奇迹一般。下面介绍两个关于素数无穷的经典证明,其中一个是欧几里得的证明,这是最原始、最简单的证法,相信很多读者已经学习过了,在此还是要提一下;另外一个是我在《怎样解题》中看到的,原作者是欧拉,也是一个非常美妙的证明。当然,本文强调的思想,论证过程可能会有一些不严谨的地方,请读者完善^_^
一、欧几里得证明
这个证明思想非常简单:若干个素数的积加上1后会产生新的素数因子。要是素数只有n个,那么我们就把它们相乘,然后加上1,得到的将会是什么呢?如果是一个素数,那么将会与素数只有n个矛盾;如果是一个合数,它除以原来的n个素数都不是整数,那么它就会拥有新的素数因子了,这还是和只有n个素数矛盾。不论哪种情况,只有素数有限,就会得出矛盾,于是素数必然是无限的。
2012年全年天象大观
By 苏剑林 | 2011-10-23 | 34530位读者 | 引用Astronomy Calendar of Celestial Events
2012年全年天象
翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html
(北京时间)
[欧拉数学]黎曼ζ函数
By 苏剑林 | 2011-11-18 | 50461位读者 | 引用欧拉数学的魅力在于,它运用类比的方法,把各个看似毫无关联的领域联系了起来,生动而巧妙地得出了正确的结果。他对$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...=\frac{\pi^2}{6}$的计算便是一个典型的例子。虽然论证过程未必严谨,但是那“神奇”的推导已经令我们拍案叫绝,而且往往发人深思。这种效果通常是严格论证难以实现的,它不仅给予我们答案,而且还给予了我们启迪:新的思想,新的方向;有时,它还揭示了各个学科之间内在而深刻的联系。下面我们来观察一下数论中的“黎曼ζ函数”和“金钥匙”!
黎曼ζ函数指的是:
$$\xi (s)=\sum_{n=1}^{\infty} \frac{1}{n^s}=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+...$$
本来s应该是一个实数,但是将复分析引入数论后,将s推广至复数具有更大的研究价值。
[欧拉数学]素数倒数之和
By 苏剑林 | 2011-11-19 | 38040位读者 | 引用上一篇文章我通过欧拉数学的方式简单地讲了数论中的“黎曼ζ函数”和“金钥匙”。事实上,这把“金钥匙”与很多问题之间的联系已经被建立了起来,换句话说,“金钥匙”已经插入到了相应的“锁孔”中,数学家的工作就是要把这个金钥匙“拧动”,继而打开数学之门!
接下来我们看看如何证明所有素数的倒数之和发散的。在入正题之前,我们得需要看一个引理:
无限数列${a_n}$的每一项都大于0,那么$\sum\limits_{n=1}^{\infty} a_n$与$\prod\limits_{n=1}^{\infty} \left(1+a_n\right)$的敛散性相同。换句话说,两者互为充分必要条件!
最近评论