20 Feb

熵的形象来源与熵的妙用

在拙作《“熵”不起:从熵、最大熵原理到最大熵模型(一)》中,笔者从比较“专业”的角度引出了熵,并对熵做了诠释。当然,熵作为不确定性的度量,应该具有更通俗、更形象的来源,本文就是试图补充这一部分,并由此给出一些妙用。

熵的形象来源

我们考虑由0-9这十个数字组成的自然数,如果要求小于10000的话,那么很自然有10000个,如果我们说“某个小于10000的自然数”,那么0~9999都有可能出现,那么10000便是这件事的不确定性的一个度量。类似地,考虑$n$个不同元素(可重复使用)组成的长度为$m$的序列,那么这个序列有$n^m$种情况,这时$n^m$也是这件事情的不确定性的度量。

$n^m$是指数形式的,数字可能异常地大,因此我们取了对数,得到$m\log n$,这也可以作为不确定性的度量,它跟我们原来熵的定义是一致的。因为
$$m\log n=-\sum_{i=1}^{n^m} \frac{1}{n^m}\log \frac{1}{n^m}$$

读者可能会疑惑,$n^m$和$m\log n$都算是不确定性的度量,那么究竟是什么原因决定了我们用$m\log n$而不是用$n^m$呢?答案是可加性。取对数后的度量具有可加性,方便我们运算。当然,可加性只是便利的要求,并不是必然的。如果使用$n^m$形式,那么就相应地具有可乘性。

点击阅读全文...

6 Mar

Openwrt自动扫描WiFi并连接中继

最近入手了一个非常迷你的路由器——由25 x 25mm的vocore开发板搭建成的超小路由器,配上外壳后,也仅仅是37.4 x 34 x 25.9mm,比一个随身WiFi稍大。(链接

vocore路由器

vocore路由器

点击阅读全文...

20 Mar

[欧拉数学]伯努利级数及相关级数的总结

最近在算路径积分的时候,频繁地遇到了以下两种无穷级数:
$$\sum_n \frac{1}{n^2\pm\omega^2}\quad \text{和} \quad \prod_n \left(1\pm\frac{\omega^2}{n^2}\right)$$
当然,直接用Mathematica可以很干脆地算出结果来,但是我还是想知道为什么,至少大概地知道。

伯努利级数

当$\omega=0$的时候,第一个级数变为著名的伯努利级数
$$\sum_n \frac{1}{n^2}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\dots$$
既然跟伯努利级数有关,那么很自然想到,从伯努利级数的求和入手。

点击阅读全文...

18 May

调侃:万有引力与爱因斯坦的理论

我不是研究引力的,也没有很好地学习过引力。在理论物理方面,我学习经典力学和量子力学比学习广义相对论要多得多。因此,本来我是不应该谈引力的,以免误人子弟。不过,在一次坐车的途中,司机的刹车和加速让我联想到了一些跟引力有关的东西,自我感觉比较有趣,所以发给大家分享一下,也请大家指正。

等效原理

坐汽车

坐汽车

引力,准确来说应该是“万有引力”。所谓“万有”,有两个含义:1、所有物体都能够产生引力;2、所有物体都被引力影响。一个力居然是“万有”的,这让爱因斯坦感觉到非常奇怪,这也是四种基本力之中,引力跟其他力区别最明显的地方。相比之下,电磁相互作用力就只能存在于有“电”的地方,弱相互作用只存在于费米子,等等。

除了引力之外,我们平时还遇到过什么“万有”的力吗?貌似没有。但是我们想象一下,当你坐在一辆长途大巴匀速前进时,突然司机来了一个急刹车,在刹车的那一瞬间,所有人都往前倾了,不仅如此,可能你的行李箱、你的随身物品都往前移的,事实上,车上所有东西都受到了一个往前的力!对于那辆车上的人和物来说,刹车的那一瞬间,就存在着一个“万有”的力!

点击阅读全文...

18 Jun

OCR技术浅探:3. 特征提取(2)

逐层识别

当图像有效地进行分层后,我们就可以根据前面的假设,进一步设计相应的模型,通过逐层处理的方式找出图像中的文字区域.

连通性

8邻接

8邻接

可以看到,每一层的图像是由若干连通区域组成的,文字本身是由笔画较为密集组成的,因此往往文字也能够组成一个连通区域. 这里的连通定义为8邻接,即某个像素周围的8个像素都定义为邻接像素,邻接的像素则被定义为同一个连通区域.

定义了连通区域后,每个图层被分割为若干个连通区域,也就是说,我们逐步地将原始图像进行分解,如图9.

点击阅读全文...

25 Jun

OCR技术浅探:6. 光学识别

经过第一、二步,我们已经能够找出图像中单个文字的区域,接下来可以建立相应的模型对单字进行识别.

模型选择

在模型方面,我们选择了深度学习中的卷积神经网络模型,通过多层卷积神经网络,构建了单字的识别模型.

卷积神经网络是人工神经网络的一种,已成为当前图像识别领域的主流模型. 它通过局部感知野权值共享方法,降低了网络模型的复杂度,减少了权值的数量,在网络结构上更类似于生物神经网络,这也预示着它必然具有更优秀的效果. 事实上,我们选择卷积神经网络的主要原因有:

1. 对原始图像自动提取特征 卷积神经网络模型可以直接将原始图像进行输入,免除了传统模型的人工提取特征这一比较困难的核心部分;

2. 比传统模型更高的精度 比如在MNIST手写数字识别任务中,可以达到99%以上的精度,这远高于传统模型的精度;

3. 比传统模型更好的泛化能力 这意味着图像本身的形变(伸缩、旋转)以及图像上的噪音对识别的结果影响不明显,这正是一个良好的OCR系统所必需的.

点击阅读全文...

17 Jun

OCR技术浅探:2. 背景与假设

研究背景

关于光学字符识别(Optical Character Recognition, 下面都简称OCR),是指将图像上的文字转化为计算机可编辑的文字内容,众多的研究人员对相关的技术研究已久,也有不少成熟的OCR技术和产品产生,比如汉王OCR、ABBYY FineReader、Tesseract OCR等. 值得一提的是,ABBYY FineReader不仅正确率高(包括对中文的识别),而且还能保留大部分的排版效果,是一个非常强大的OCR商业软件.

然而,在诸多的OCR成品中,除了Tesseract OCR外,其他的都是闭源的、甚至是商业的软件,我们既无法将它们嵌入到我们自己的程序中,也无法对其进行改进. 开源的唯一选择是Google的Tesseract OCR,但它的识别效果不算很好,而且中文识别正确率偏低,有待进一步改进.

综上所述,不管是为了学术研究还是实际应用,都有必要对OCR技术进行探究和改进. 我们队伍将完整的OCR系统分为“特征提取”、“文字定位”、“光学识别”、“语言模型”四个方面,逐步进行解决,最终完成了一个可用的、完整的、用于印刷文字的OCR系统. 该系统可以初步用于电商、微信等平台的图片文字识别,以判断上面信息的真伪.

研究假设

在本文中,我们假设图像的文字部分有以下的特征:

点击阅读全文...

18 Jun

OCR技术浅探:3. 特征提取(1)

作为OCR系统的第一步,特征提取是希望找出图像中候选的文字区域特征,以便我们在第二步进行文字定位和第三步进行识别. 在这部分内容中,我们集中精力模仿肉眼对图像与汉字的处理过程,在图像的处理和汉字的定位方面走了一条创新的道路. 这部分工作是整个OCR系统最核心的部分,也是我们工作中最核心的部分.

传统的文本分割思路大多数是“边缘检测 + 腐蚀膨胀 + 联通区域检测”,如论文[1]. 然而,在复杂背景的图像下进行边缘检测会导致背景部分的边缘过多(即噪音增加),同时文字部分的边缘信息则容易被忽略,从而导致效果变差. 如果在此时进行腐蚀或膨胀,那么将会使得背景区域跟文字区域粘合,效果进一步恶化.(事实上,我们在这条路上已经走得足够远了,我们甚至自己写过边缘检测函数来做这个事情,经过很多测试,最终我们决定放弃这种思路。)

因此,在本文中,我们放弃了边缘检测和腐蚀膨胀,通过聚类、分割、去噪、池化等步骤,得到了比较良好的文字部分的特征,整个流程大致如图2,这些特征甚至可以直接输入到文字识别模型中进行识别,而不用做额外的处理.由于我们每一部分结果都有相应的理论基础作为支撑,因此能够模型的可靠性得到保证.

图2:特征提取大概流程

图2:特征提取大概流程

点击阅读全文...