【不可思议的Word2Vec】6. Keras版的Word2Vec
By 苏剑林 | 2017-08-06 | 139896位读者 | 引用前言
看过我之前写的TF版的Word2Vec后,Keras群里的Yin神问我有没有Keras版的。事实上在做TF版之前,我就写过Keras版的,不过没有保留,所以重写了一遍,更高效率,代码也更好看了。纯Keras代码实现Word2Vec,原理跟《【不可思议的Word2Vec】5. Tensorflow版的Word2Vec》是一样的,现在放出来,我想,会有人需要的。(比如,自己往里边加一些额外输入,然后做更好的词向量模型?)
由于Keras同时支持tensorflow、theano、cntk等多个后端,这就等价于实现了多个框架的Word2Vec了。嗯,这样想就高大上了,哈哈~
代码
开学啦!咱们来做完形填空~(讯飞杯)
By 苏剑林 | 2017-09-03 | 201920位读者 | 引用前言
从今年开始,CCL会议将计划同步举办评测活动。笔者这段时间在一创业公司实习,公司也报名参加这个评测,最后实现上就落在我这里,今年的评测任务是阅读理解,名曰《第一届“讯飞杯”中文机器阅读理解评测》。虽说是阅读理解,但事实上任务比较简单,是属于完形填空类型的,即一段材料中挖了一个空,从上下文中选一个词来填入这个空中。最后我们的模型是单系统排名第6,验证集准确率为73.55%,测试集准确率为75.77%,大家可以在这里观摩排行榜。(“广州火焰信息科技有限公司”就是文本的模型)
事实上,这个数据集和任务格式是哈工大去年提出的,所以这次的评测也是哈工大跟科大讯飞一起联合举办的。哈工大去年的论文《Consensus Attention-based Neural Networks for Chinese Reading Comprehension》就研究过另一个同样格式但不同内容的数据集,是用通用的阅读理解模型做的(通用的阅读理解是指给出材料和问题,从材料中找到问题的答案,完形填空可以认为是通用阅读理解的一个非常小的子集)。
虽然,在这次评测任务的介绍中,评测方总有意无意地引导我们将这个问题理解为阅读理解问题。但笔者觉得,阅读理解本身就难得多,这个就一完形填空,只要把它作为纯粹的完形填空题做就是了,所以本文仅仅是采用类似语言模型的做法来做。这种做法的好处是思路简明直观,计算量低(在笔者的GTX1060上可以跑到batch size为160),便于实验。
模型
回到模型上,我们的模型其实比较简单,完全紧扣了“从上下文中选一个词来填空”这一思想,示意图如下。
RNN模型中输入的重要性的评估
By 苏剑林 | 2017-09-10 | 29757位读者 | 引用Saliency Maps for RNN
RNN是很多序列任务的不二法门,比如文本分类任务的常用方法就是“词向量+LSTM+全连接分类器”。如下图
假如这样的一个模型可以良好地工作,那么现在考虑一个任务是:如何衡量输入$w_1,\dots,w_n$对最终的分类结果的影响的重要程度(Saliency)呢?例如假设这是一个情感分类任务,那么怎么找出是哪些词对最终的分类有较为重要的影响呢?本文给出了一个较为直接的思路。
思路的原理很简单,因为我们是将RNN最后一步的状态向量(也就是绿色阴影所代表的向量)传递给后面的分类器进行分类的,因此最后一步的状态向量$\boldsymbol{h}_n$就是一个目标向量。而RNN是一个递推的过程,
从马尔科夫过程到主方程(推导过程)
By 苏剑林 | 2017-10-06 | 73524位读者 | 引用主方程(master equation)是对随机过程进行建模的重要方法,它代表着马尔科夫过程的微分形式,我们的专业主要工具之一就是主方程,说宏大一点,量子力学和统计力学等也不外乎是主方程的一个特例。
然而,笔者阅读了几个著作,比如《统计物理现代教程》,还有我导师的《生物系统的随机动力学》,我发现这些著作对于主方程的推导都很模糊,他们在着力解释结果的意义,但并不说明结果的思想来源,因此其过程难以让人信服。而知乎上有人提问《如何理解马尔科夫过程的主方程的推导过程?》但没有得到很好的答案,也表明了这个事实。
马尔可夫过程
主方程是用来描述马尔科夫过程的,而马尔科夫过程可以理解为运动的无记忆性,说通俗点,就是下一刻的概率分布,只跟当前时刻有关,跟历史状态无关。用概率公式写出来就是(这里只考虑连续型概率,因此这里的$p$是概率密度):
$$\begin{equation}\label{eq:maerkefu}p(x,\tau)=\int p(x,\tau|y,t) p(y,t) dy\end{equation}$$
这里的积分区域是全空间。这里的$p(x,\tau|y,t)$称为跃迁概率,即已经确定了$t$时刻来到了$y$位置后、在$\tau$时刻达到$x$的概率密度,这个式子的物理意义是很明显的,就不多做解释了。
浅谈神经网络中激活函数的设计
By 苏剑林 | 2017-10-26 | 46442位读者 | 引用激活函数是神经网络中非线性的来源,因为如果去掉这些函数,那么整个网络就只剩下线性运算,线性运算的复合还是线性运算的,最终的效果只相当于单层的线性模型。
那么,常见的激活函数有哪些呢?或者说,激活函数的选择有哪些指导原则呢?是不是任意的非线性函数都可以做激活函数呢?
这里探究的激活函数是中间层的激活函数,而不是输出的激活函数。最后的输出一般会有特定的激活函数,不能随意改变,比如二分类一般用sigmoid函数激活,多分类一般用softmax激活,等等;相比之下,中间层的激活函数选择余地更大一些。
浮点误差都行!
理论上来说,只要是非线性函数,都有做激活函数的可能性,一个很有说服力的例子是,最近OpenAI成功地利用了浮点误差来做激活函数,其中的细节,请阅读OpenAI的博客:
https://blog.openai.com/nonlinear-computation-in-linear-networks/
或者阅读机器之心的介绍:
https://mp.weixin.qq.com/s/PBRzS4Ol_Zst35XKrEpxdw
更别致的词向量模型(一):simpler glove
By 苏剑林 | 2017-11-19 | 42209位读者 | 引用如果问我哪个是最方便、最好用的词向量模型,我觉得应该是word2vec,但如果问我哪个是最漂亮的词向量模型,我不知道,我觉得各个模型总有一些不足的地方。且不说试验效果好不好(这不过是评测指标的问题),就单看理论也没有一个模型称得上漂亮的。
本文讨论了一些大家比较关心的词向量的问题,很多结论基本上都是实验发现的,缺乏合理的解释,包括:
如果去构造一个词向量模型?
为什么用余弦值来做近义词搜索?向量的内积又是什么含义?
词向量的模长有什么特殊的含义?
为什么词向量具有词类比性质?(国王-男人+女人=女王)
得到词向量后怎么构建句向量?词向量求和作为简单的句向量的依据是什么?
这些讨论既有其针对性,也有它的一般性,有些解释也许可以直接迁移到对glove模型和skip gram模型的词向量性质的诠释中,读者可以自行尝试。
围绕着这些问题的讨论,本文提出了一个新的类似glove的词向量模型,这里称之为simpler glove,并基于斯坦福的glove源码进行修改,给出了本文的实现,具体代码在Github上。
更别致的词向量模型(二):对语言进行建模
By 苏剑林 | 2017-11-19 | 53808位读者 | 引用从条件概率到互信息
目前,词向量模型的原理基本都是词的上下文的分布可以揭示这个词的语义,就好比“看看你跟什么样的人交往,就知道你是什么样的人”,所以词向量模型的核心就是对上下文的关系进行建模。除了glove之外,几乎所有词向量模型都是在对条件概率$P(w|context)$进行建模,比如Word2Vec的skip gram模型就是对条件概率$P(w_2|w_1)$进行建模。但这个量其实是有些缺点的,首先它是不对称的,即$P(w_2|w_1)$不一定等于$P(w_1|w_2)$,这样我们在建模的时候,就要把上下文向量和目标向量区分开,它们不能在同一向量空间中;其次,它是有界的、归一化的量,这就意味着我们必须使用softmax等方法将它压缩归一,这造成了优化上的困难。
事实上,在NLP的世界里,有一个更加对称的量比单纯的$P(w_2|w_1)$更为重要,那就是
\[\frac{P(w_1,w_2)}{P(w_1)P(w_2)}=\frac{P(w_2|w_1)}{P(w_2)}\tag{1}\]
这个量的大概意思是“两个词真实碰面的概率是它们随机相遇的概率的多少倍”,如果它远远大于1,那么表明它们倾向于共同出现而不是随机组合的,当然如果它远远小于1,那就意味着它们俩是刻意回避对方的。这个量在NLP界是举足轻重的,我们暂且称它为“相关度“,当然,它的对数值更加出名,大名为点互信息(Pointwise Mutual Information,PMI):
\[\text{PMI}(w_1,w_2)=\log \frac{P(w_1,w_2)}{P(w_1)P(w_2)}\tag{2}\]
有了上面的理论基础,我们认为,如果能直接对相关度进行建模,会比直接对条件概率$P(w_2|w_1)$建模更加合理,所以本文就围绕这个角度进行展开。在此之前,我们先进一步展示一下互信息本身的美妙性质。
更别致的词向量模型(五):有趣的结果
By 苏剑林 | 2017-11-19 | 87230位读者 | 引用最后,我们来看一下词向量模型$(15)$会有什么好的性质,或者说,如此煞费苦心去构造一个新的词向量模型,会得到什么回报呢?
模长的含义
似乎所有的词向量模型中,都很少会关心词向量的模长。有趣的是,我们上述词向量模型得到的词向量,其模长还能在一定程度上代表着词的重要程度。我们可以从两个角度理解这个事实。
在一个窗口内的上下文,中心词重复出现概率其实是不大的,是一个比较随机的事件,因此可以粗略地认为
\[P(w,w) \sim P(w)\tag{24}\]
所以根据我们的模型,就有
\[e^{\langle\boldsymbol{v}_{w},\boldsymbol{v}_{w}\rangle} =\frac{P(w,w)}{P(w)P(w)}\sim \frac{1}{P(w)}\tag{25}\]
所以
\[\Vert\boldsymbol{v}_{w}\Vert^2 \sim -\log P(w)\tag{26}\]
可见,词语越高频(越有可能就是停用词、虚词等),对应的词向量模长就越小,这就表明了这种词向量的模长确实可以代表词的重要性。事实上,$-\log P(w)$这个量类似IDF,有个专门的名称叫ICF,请参考论文《TF-ICF: A New Term Weighting Scheme for Clustering Dynamic Data Streams》。
最近评论