路径积分系列:1.我的毕业论文
By 苏剑林 | 2016-05-30 | 28409位读者 | 引用之前承诺过会把毕业论文共享出来,让大家批评指正,却一直偷懒没动。事实上,毕业论文的主要内容就是路径积分的一些入门级别的内容,标题为《随机游走、随机微分方程与偏微分方程的路径积分方法》。我的摘要是这样写的:
本文从随机游走模型出发,得到了关于随机游走模型的一般结果;然后基于随机游走模型引入了路径积分,并且通过路径积分方法,实现了随机游走、随机微分方程与抛物型微分方程的相互转化,并给出了一些计算案例.
路径积分方法是量子理论的一种形式,但实际上它可以抽象为一个有用的数学工具,本文的主要方法正是抽象后的路径积分;其次,量子力学中有一个相当典型的抛物型偏微分方程——薛定谔方程,物理学家已经对它进行了大量的研究,有众多的成果;而随机微分方程是一个微分方程的拓展,在物理、工程、金融等很多方面都有重要应用,这个领域中也有很多研究方法;最后,随机游走是一个简单而重要的模型,它是很多扩散模型的基础,而且具有容易使用计算机模拟的特性. 因此,实现三者的转化是很有意义的.
本文有一些新的内容,比如现有文献比较少研究的不对称随机游走方面、以及现有文献比较含糊的对路径积分的介绍等,可以供同好参考,希望借此方式,能够让一些读者以更简洁明了的方式理解路径积分. 但是本文主要是陈述性的,旨在在国内推广路径积分方法. 在国外,路径积分方法得到了相当的重视,它源于量子力学,但应用已经不仅仅限于量子力学,如著作[1],因此,推广路径积分方法、增加路径积分的中文资料,是很有意义和很有必要的事情.
本文所有推导和例子均以一维为例,相应的多维问题可以类似地计算。
路径积分系列:2.随机游走模型
By 苏剑林 | 2016-05-30 | 54992位读者 | 引用随机游走模型形式简单,但通过它可以导出丰富的结果,它是物理中各种扩散模型的基础之一,它也等价于随机过程中的布朗运动.
笔者所阅的文献表明,数学家已经对对称随机游走问题作了充分研究[2],也探讨了随机游走问题与偏微分方程的关系[3],并且还研究过不对称随机游走问题[4]. 然而,已有结果的不足之处有:1、在推导随机游走问题的概率分布或者偏微分方程之时,所用的方法不够简洁明了;2、没有研究更一般的不对称随机游走问题.
本章弥补了这一不足,首先通过母函数和傅里叶变换的方法,推导出了不对称随机游走问题所满足的偏微分方程,并且提出,由于随机游走容易通过计算机模拟,因此通过随机游走来模拟偏微分方程的解是一种有效的数值途径.
模型简介
本节通过一个本质上属于二项分布的走格子问题来引入随机游走.
考虑实数轴上的一个粒子,在$t=0$时刻它位于原点,每秒钟它以相等的概率向前或向后移动一格($+1$或$-1$),问$n$秒后它所处位置的概率分布.
路径积分系列:3.路径积分
By 苏剑林 | 2016-06-02 | 74152位读者 | 引用路径积分是量子力学的一种描述方法,源于物理学家费曼[5],它是一种泛函积分,它已经成为现代量子理论的主流形式. 近年来,研究人员对它的兴趣愈发增加,尤其是它在量子领域以外的应用,出现了一些著作,如[7]. 但在国内了解路径积分的人并不多,很多量子物理专业的学生可能并没有听说过路径积分.
从数学角度来看,路径积分是求偏微分方程的Green函数的一种方法. 我们知道,在偏微分方程的研究中,如果能够求出对应的Green函数,那么对偏微分方程的研究会大有帮助,而通常情况下Green函数并不容易求解. 但构建路径积分只需要无穷小时刻的Green函数,因此形式和概念上都相当简单.
本章并没有新的内容,只是做了一个尝试:从随机游走问题出发,给出路径积分的一个简明而直接的介绍,展示了如何将抛物型的偏微分方程问题转化为路径积分形式.
从点的概率到路径的概率
在上一章对随机游走的研究中,我们得出从$x_0$出发,$t$时间后,走到$x_n$处的概率密度为
$$\frac{1}{\sqrt{2\pi \alpha T}}\exp\left(-\frac{(x_n-x_0)^2}{2\alpha t}\right).\tag{22}$$
这是某时刻某点到另一个时刻另一点的概率,在数学上,我们称之为扩散方程$(21)$的传播子,或者Green函数.
路径积分系列:4.随机微分方程
By 苏剑林 | 2016-06-09 | 29009位读者 | 引用本章将路径积分用于随机微分方程,并且得到了与不对称随机游走一样的结果,从而证明了它与该模型的等价性.
将路径积分用于随机微分方程的研究,这一思路由来已久. 费曼在他的著作[5]中,已经建立了路径积分与线性随机微分方程的关系. 而对于非线性的情况,也有不少研究,但比较混乱,如文献[8]甚至给出了错误的结果.
本文从路径积分的离散化概念出发,明确地建立了两个路径积分微元的雅可比行列式关系,从而对非线性随机微分方程也建立了路径积分. 本文的结果跟文献[9]的结果是一致的.
概念
本文所研究的仅仅是随机常微分方程,它与一般的常微分方程的区别在于布朗运动项的引入,如常见的一类随机微分方程为
$$dx(t)=p(x(t),t)dt + \sqrt{\alpha} dW_t.\tag{48}$$
其中$W_t$代表着一个标准的布朗运动. 由于引入了随机项,所以解$x(t)$不再是确定的,而是有一定的概率分布.
在对随机微分方程中,感兴趣的量有很多,比如关于$x$的某个量的期望、方差,或者稳定性,等等. 随机微分方程领域中有各种分析的技巧,但是显然,直接求出$x(t)$的概率分布后对概率分布进行研究,是最理想最容易的方案. 路径积分正是给出了求概率分布的一个方法.
OCR技术浅探:2. 背景与假设
By 苏剑林 | 2016-06-17 | 38330位读者 | 引用研究背景
关于光学字符识别(Optical Character Recognition, 下面都简称OCR),是指将图像上的文字转化为计算机可编辑的文字内容,众多的研究人员对相关的技术研究已久,也有不少成熟的OCR技术和产品产生,比如汉王OCR、ABBYY FineReader、Tesseract OCR等. 值得一提的是,ABBYY FineReader不仅正确率高(包括对中文的识别),而且还能保留大部分的排版效果,是一个非常强大的OCR商业软件.
然而,在诸多的OCR成品中,除了Tesseract OCR外,其他的都是闭源的、甚至是商业的软件,我们既无法将它们嵌入到我们自己的程序中,也无法对其进行改进. 开源的唯一选择是Google的Tesseract OCR,但它的识别效果不算很好,而且中文识别正确率偏低,有待进一步改进.
综上所述,不管是为了学术研究还是实际应用,都有必要对OCR技术进行探究和改进. 我们队伍将完整的OCR系统分为“特征提取”、“文字定位”、“光学识别”、“语言模型”四个方面,逐步进行解决,最终完成了一个可用的、完整的、用于印刷文字的OCR系统. 该系统可以初步用于电商、微信等平台的图片文字识别,以判断上面信息的真伪.
研究假设
在本文中,我们假设图像的文字部分有以下的特征:
OCR技术浅探:7. 语言模型
By 苏剑林 | 2016-06-26 | 50563位读者 | 引用由于图像质量等原因,性能再好的识别模型,都会有识别错误的可能性,为了减少识别错误率,可以将识别问题跟统计语言模型结合起来,通过动态规划的方法给出最优的识别结果.这是改进OCR识别效果的重要方法之一.
转移概率
在我们分析实验结果的过程中,有出现这一案例.由于图像不清晰等可能的原因,导致“电视”一词被识别为“电柳”,仅用图像模型是不能很好地解决这个问题的,因为从图像模型来看,识别为“电柳”是最优的选择.但是语言模型却可以很巧妙地解决这个问题.原因很简单,基于大量的文本数据我们可以统计“电视”一词和“电柳”一词的概率,可以发现“电视”一词的概率远远大于“电柳”,因此我们会认为这个词是“电视”而不是“电柳”.
从概率的角度来看,就是对于第一个字的区域的识别结果$s_1$,我们前面的卷积神经网络给出了“电”、“宙”两个候选字(仅仅选了前两个,后面的概率太小),每个候选字的概率$W(s_1)$分别为0.99996、0.00004;第二个字的区域的识别结果$s_2$,我们前面的卷积神经网络给出了“柳”、“视”、“规”(仅仅选了前三个,后面的概率太小),每个候选字的概率$W(s_2)$分别为0.87838、0.12148、0.00012,因此,它们事实上有六种组合:“电柳”、“电视”、“电规”、“宙柳”、“宙视”、“宙规”.
OCR技术浅探:9. 代码共享(完)
By 苏剑林 | 2016-06-26 | 68445位读者 | 引用OCR技术浅探:8. 综合评估
By 苏剑林 | 2016-06-26 | 29195位读者 | 引用数据验证
尽管在测试环境下模型工作良好,但是实践是检验真理的唯一标准. 在本节中,我们通过自己的模型,与京东的测试数据进行比较验证.
衡量OCR系统的好坏有两部分内容:(1)是否成功地圈出了文字;(2)对于圈出来的文字,有没有成功识别. 我们采用评分的方法,对每一张图片的识别效果进行评分. 评分规则如下:
如果圈出的文字区域能够跟京东提供的检测样本的box文件中匹配,那么加1分,如果正确识别出文字来,另外加1分,最后每张图片的分数是前面总分除以文字总数.
按照这个规则,每张图片的评分最多是2分,最少是0分. 如果评分超过1,说明识别效果比较好了. 经过京东的测试数据比较,我们的模型平均评分大约是0.84,效果差强人意。
最近评论