初试在Python中使用PARI/GP
By 苏剑林 | 2014-07-22 | 30475位读者 | 引用素数之美1:所有素数之积
By 苏剑林 | 2014-07-30 | 32890位读者 | 引用在之前的欧拉数学中,我们计算过所有素数的倒数之和,得出素数的倒数之和是发散的,从而这也是一个关于素数个数为无穷的证明。在本篇文章中,我们尝试计算所有素数之积,通过一个简单的技巧,得到素数之积的一个上限(以后我们也会计算下限),从而也得到$\pi(n)$的一个上限公式。更重要的,该估计是初等地证明Bertrand假设(说的是n与2n之间定有一个素数)的重要基础之一。本文内容部分参考自《数学天书中的证明》和《解析和概率数论导引》。
素数之积
笔者已经说过,数论的神奇之处就是它总是出人意料地把数学的不同领域联系了起来。读者很快就可以看到,本文的证明和组合数学有重要联系(但仅仅是简单的联系)。关于素数之积,我们有以下结论:
不超过$n$的所有素数之积小于$4^{n-1}$。
班门弄斧:Python的代码能有多简洁?
By 苏剑林 | 2014-10-07 | 28507位读者 | 引用怎么会这么巧!背后的隐藏信息
By 苏剑林 | 2015-01-21 | 35632位读者 | 引用假设我是一名中学数学老师,在给学生兴致勃勃地讲“素数”,讲完素数的定义和相关性质后,正当我接着往下讲时,有个捣蛋的学生提问,“老师,你能不能举一个三位数的素数?”。可是我手头上没有1000以内的素数表,我也没记住超过100的素数,那怎么办呢?我只好在黑板上写出几个三位数,比如173、211、463,然后跟学生说“让我们来检验这些数是不是素数”。最终的结果是:它们都是素数!然后会有学生疑问:怎么会这么巧?
素数的概率
首先的问题是,任意写一个三位数,它是素数的概率是多少?三位数的素数共有143个,三位数共有900个,于是概率应该是143/900,大约是六分之一。看起来挺低的,要“蒙中”似乎不容易。
两百万素数之和与“电脑病”
By 苏剑林 | 2014-10-17 | 15418位读者 | 引用原则上来讲,同样的算法,如果分别在Python和C++上实现,那么Python的速度肯定比不上C++的。但是Python还被称为“胶水语言”,它允许我们把主要计算的部分用C或C++等高效的语言编写好,然后它作为“粘合剂”把两者粘合在一起。正因为如此,Python才有了各种各样的扩展库,这些库中有不少是用C语言编写的。因此,我们在编写Python程序的时候,如果可以用这些现成的库,速度会快很多。本文就是用Numpy来改进之前的《两百万前素数之和与前两百万素数之和》的计算。
算法本身是没有变的,只是用了Numpy来处理数组计算,代码如下:
从费马大定理谈起(十一):有理点与切割线法
By 苏剑林 | 2014-10-24 | 26545位读者 | 引用我们在这个系列的文章之中,探索了一些有关环和域的基本知识,并用整环以及唯一分解性定理证明了费马大定理在n=3和n=4时的情形。使用高斯整数环或者艾森斯坦整数环的相关知识,相对而言是属于近代的比较“高端”的代数内容(高斯生于1777年,艾森斯坦生于1823年,然而艾森斯坦英年早逝,只活到了1852年,高斯还活到了1855年。)。如果“顺利”的话,我们可以用这些“高端”的工具证明解的不存在性,或者求出通解(如果有解的话)。
然而,对于初等数论来讲,复数环和域的知识的门槛还是有点高了。其次,环和域是一个比较“强”的工具。这里的“强”有点“强势”的意味,是指这样的意思:如果它成功的话,它能够“一举破城”,把通解都求出来(或者证明解的不存在);如果它不成功的话,那么往往就连一点非平凡的解都求不出来。可是,有些问题是求出一部分解都已经很困难了,更不用说求出通解了(我们以后在研究$x^4+y^4 = z^4 + w^4 $的整数解的时候,就能深刻体会这点。)。因此,对于这些问题,单纯用环域的思想,很难给予我们(至少一部分)解。(当然,问题是如何才算是“单纯”,这也很难界定。这里的评论是比较粗糙的。)
在Python中使用GMP(gmpy2)
By 苏剑林 | 2014-10-28 | 66987位读者 | 引用之前笔者曾写过《初试在Python中使用PARI/GP》,简单介绍了一下在Python中调用PARI/GP的方法。PARI/GP是一个比较强大的数论库,“针对数论中的快速计算(大数分解,代数数论,椭圆曲线...)而设计”,它既可以被C/C++或Python之类的编程语言调用,而且它本身又是一种自成一体的脚本语言。而如果仅仅需要高精度的大数运算功能,那么GMP似乎更满足我们的需求。
了解C/C++的读者都会知道GMP(全称是GNU Multiple Precision Arithmetic Library,即GNU高精度算术运算库),它是一个开源的高精度运算库,其中不但有普通的整数、实数、浮点数的高精度运算,还有随机数生成,尤其是提供了非常完备的数论中的运算接口,比如Miller-Rabin素数测试算法、大素数生成、欧几里德算法、求域中元素的逆、Jacobi符号、legendre符号等[来源]。虽然在C/C++中调用GMP并不算复杂,但是如果能在以高开发效率著称的Python中使用GMP,那么无疑是一件快事。这正是本文要说的gmpy2。
Designing GANs:又一个GAN生产车间
By 苏剑林 | 2020-02-13 | 33432位读者 | 引用在2018年的文章里《f-GAN简介:GAN模型的生产车间》笔者介绍了f-GAN,并评价其为GAN模型的“生产车间”,顾名思义,这是指它能按照固定的流程构造出很多不同形式的GAN模型来。前几天在arxiv上看到了新出的一篇论文《Designing GANs: A Likelihood Ratio Approach》(后面简称Designing GANs或原论文),发现它在做跟f-GAN同样的事情,但走的是一条截然不同的路(不过最后其实是殊途同归),整篇论文颇有意思,遂在此分享一番。
f-GAN回顾
从《f-GAN简介:GAN模型的生产车间》中我们可以知道,f-GAN的首要步骤是找到满足如下条件的函数$f$:
1、$f$是非负实数到实数的映射($\mathbb{R}^* \to \mathbb{R}$);
2、$f(1)=0$;
3、$f$是凸函数。
最近评论