为什么勒贝格积分比黎曼积分强?
By 苏剑林 | 2016-11-16 | 115451位读者 | 引用学过实变函数的朋友,总会知道有个叫勒贝格积分的东西,号称是黎曼积分的改进版。虽然“实变函数学十遍,泛函分析心泛寒”,在学习实变函数的时候,我们通常都是云里雾里的,不过到最后,在老师的“灌溉”之下,也就耳濡目染了知道了一些结论,比如“黎曼可积的函数(在有限区间),也是勒贝格可积的”,说白了,就是“勒贝格积分比黎曼积分强”。那么,问题来了,究竟强在哪儿?为什么会强?
这个问题,笔者在学习实变函数的时候并没有弄懂,后来也一直搁着,直到最近认真看了《重温微积分》之后,才有了些感觉。顺便说,齐民友老师的《重温微积分》真的很赞,值得一看。
本是同根生,相煎何太急?
【外微分浅谈】7. 有力的计算
By 苏剑林 | 2016-11-11 | 27362位读者 | 引用这里我们将展示上面一节的方法对于计算黎曼曲率张量的计算是多少的有力!我们再次列出我们得到的所有公式。首先是概念式的
$$\begin{aligned}&\omega^{\mu}=h_{\alpha}^{\mu}dx^{\alpha}\\
&d\boldsymbol{r}=\hat{\boldsymbol{e}}_{\mu} \omega^{\mu}\\
&ds^2 = \eta_{\mu\nu} \omega^{\mu}\omega^{\nu}\\
&\langle \hat{\boldsymbol{e}}_{\mu}, \hat{\boldsymbol{e}}_{\nu}\rangle = \eta_{\mu\nu}\end{aligned} \tag{65} $$
然后是
$$\begin{aligned}&d\eta_{\mu\nu}=\omega_{\nu\mu}+\omega_{\mu\nu}=\eta_{\nu\alpha}\omega_{\mu}^{\alpha}+\eta_{\mu \alpha}\omega_{\nu}^{\alpha}\\
&d\omega^{\mu}+\omega_{\nu}^{\mu}\land \omega^{\nu}=0\end{aligned} \tag{66} $$
这两个可以帮助我们确定$\omega_{\nu}^{\mu}$;接着就是
$$\mathscr{R}_{\nu}^{\mu} = d\omega_{\nu}^{\mu}+\omega_{\alpha}^{\mu} \land \omega_{\nu}^{\alpha} \tag{67} $$
最后你要正交标架下的$\hat{R}^{\mu}_{\nu\beta\gamma}$,就要写出:
$$\mathscr{R}_{\nu}^{\mu}=\sum_{\beta < \gamma} \hat{R}^{\mu}_{\nu\beta\gamma}\omega^{\beta}\land \omega^{\gamma} \tag{68} $$
如果你要原始标架下的$R^{\mu}_{\nu\beta\gamma}$,就要写出
$$(h^{-1})_{\mu'}^{\mu}\mathscr{R}^{\mu'}_{\nu'}h_{\nu}^{\nu'} = \sum_{\beta < \gamma} R^{\mu}_{\nu\beta\gamma}dx^{\beta}\land dx^{\gamma} \tag{69} $$
然后依次读出$R^{\mu}_{\nu\beta\gamma}$,就像制表一样。
词向量与Embedding究竟是怎么回事?
By 苏剑林 | 2016-12-03 | 274719位读者 | 引用词向量,英文名叫Word Embedding,按照字面意思,应该是词嵌入。说到词向量,不少读者应该会立马想到Google出品的Word2Vec,大牌效应就是不一样。另外,用Keras之类的框架还有一个Embedding层,也说是将词ID映射为向量。由于先入为主的意识,大家可能就会将词向量跟Word2Vec等同起来,而反过来问“Embedding是哪种词向量?”这类问题,尤其是对于初学者来说,应该是很混淆的。事实上,哪怕对于老手,也不一定能够很好地说清楚。
这一切,还得从one hot说起...
五十步笑百步
one hot,中文可以翻译为“独热”,是最原始的用来表示字、词的方式。为了简单,本文以字为例,词也是类似的。假如词表中有“科、学、空、间、不、错”六个字,one hot就是给这六个字分别用一个0-1编码:
$$\begin{array}{c|c}\hline\text{科} & [1, 0, 0, 0, 0, 0]\\
\text{学} & [0, 1, 0, 0, 0, 0]\\
\text{空} & [0, 0, 1, 0, 0, 0]\\
\text{间} & [0, 0, 0, 1, 0, 0]\\
\text{不} & [0, 0, 0, 0, 1, 0]\\
\text{错} & [0, 0, 0, 0, 0, 1]\\
\hline
\end{array}$$
2017年快乐!Responsive Geekg for Typecho
By 苏剑林 | 2016-12-31 | 33994位读者 | 引用基于遗忘假设的平滑公式
By 苏剑林 | 2017-01-07 | 21319位读者 | 引用统计是通过大量样本来估计真实分布的过程,通常与统计相伴出现的一个词是“平滑”,即对统计结果打折扣的处理过程。平滑的思想来源于:如果样本空间非常大,那么统计的结果是稀疏的,这样由于各种偶然因素的存在,导致了小的统计结果不可靠,如频数为1的结果可能只是偶然的结果,其频率并不一定近似于$1/N$,频数为0的不一定就不会出现。这样我们就需要对统计结果进行平滑,使得结论更为可靠。
平滑的方法有很多,这里介绍一种基于遗忘假设的平滑公式。假设的任务为:我们要从一批语料中,统计每个字的字频。我们模仿人脑遗忘的过程,假设这个字出现一次,我们脑里的记忆量就增加1,但是如果一个周期内(先不管这个周期多大),这个字都没有出现,那么脑里的记忆量就变为原来的$\beta$比例。假设字是周期性出现的,那么记忆量$A_n$就满足如下递推公式
$$A_{n+1} = \beta A_n + 1$$
SVD分解(二):为什么SVD意味着聚类?
By 苏剑林 | 2017-01-26 | 75245位读者 | 引用提前祝各位读者新年快乐,2017行好运~
这篇文章主要想回答两个“为什么”的问题:1、为啥我就对SVD感兴趣了?;2、为啥我说SVD是一个聚类过程?回答的内容纯粹个人思辨结果,暂无参考文献。
为什么要研究SVD?
从2015年接触深度学习到现在,已经研究了快两年的深度学习了,现在深度学习、数据科学等概念也遍地开花。为什么在深度学习火起来的时候,我反而要回去研究“古老”的SVD分解呢?我觉得,SVD作为一个矩阵分解算法,它的价值不仅仅体现在它广泛的应用,它背后还有更加深刻的内涵,即它的可解释性。在深度学习流行的今天,不少人还是觉得深度学习(神经网络)就是一个有效的“黑箱”模型。但是,仅用“黑箱”二字来解释深度学习的有效性显然不能让人满意。前面已经说过,SVD分解本质上与不带激活函数的三层自编码机等价,理解SVD分解,能够为神经网络模型寻求一个合理的概率解释。
【中文分词系列】 8. 更好的新词发现算法
By 苏剑林 | 2017-03-11 | 225670位读者 | 引用如果依次阅读该系列文章的读者,就会发现这个系列共提供了两种从0到1的无监督分词方案,第一种就是《【中文分词系列】 2. 基于切分的新词发现》,利用相邻字凝固度(互信息)来做构建词库(有了词库,就可以用词典法分词);另外一种是《【中文分词系列】 5. 基于语言模型的无监督分词》,后者基本上可以说是提供了一种完整的独立于其它文献的无监督分词方法。
但总的来看,总感觉前面一种很快很爽,却又显得粗糙;后面一种很好很强大,却又显得太过复杂(viterbi是瓶颈之一)。有没有可能在两者之间折中一下?这就导致了本文的结果,达到了速度与效果的平衡。至于为什么说“更好”?因为笔者研究词库构建也有一段时间了,以往构建的词库总不能让人(让自己)满意,生成的词库一眼看上去,都能够扫到不少不合理的地方,真的要用得需要经过较多的人工筛选。而这一次,一次性生成的词库,一眼扫过去,不合理的地方少了很多,如果不细看,可能就发现不了了。
分词的目的
梯度下降和EM算法:系出同源,一脉相承
By 苏剑林 | 2017-03-23 | 208484位读者 | 引用PS:本文就是梳理了梯度下降与EM算法的关系,通过同一种思路,推导了普通的梯度下降法、pLSA中的EM算法、K-Means中的EM算法,以此表明它们基本都是同一个东西的不同方面,所谓“横看成岭侧成峰,远近高低各不同”罢了。
在机器学习中,通常都会将我们所要求解的问题表示为一个带有未知参数的损失函数(Loss),如平均平方误差(MSE),然后想办法求解这个函数的最小值,来得到最佳的参数值,从而完成建模。因将函数乘以-1后,最大值也就变成了最小值,因此一律归为最小值来说。如何求函数的最小值,在机器学习领域里,一般会流传两个大的方向:1、梯度下降;2、EM算法,也就是最大期望算法,一般用于复杂的最大似然问题的求解。
在通常的教程中,会将这两个方法描述得迥然不同,就像两大体系在分庭抗礼那样,而EM算法更是被描述得玄乎其玄的感觉。但事实上,这两个方法,都是同一个思路的不同例子而已,所谓“本是同根生”,它们就是一脉相承的东西。
让我们,先从远古的牛顿法谈起。
牛顿迭代法
给定一个复杂的非线性函数$f(x)$,希望求它的最小值,我们一般可以这样做,假定它足够光滑,那么它的最小值也就是它的极小值点,满足$f'(x_0)=0$,然后可以转化为求方程$f'(x)=0$的根了。非线性方程的根我们有个牛顿法,所以
\begin{equation}x_{n+1} = x_{n} - \frac{f'(x_n)}{f''(x_n)}\end{equation}
最近评论