19 Jan

宇宙驿站服务器升级完毕

这一周科学空间时断时续的,原因是原来的服务器两个内存条坏了,内存不够用。

后来天文台决定给我们换一台服务器,这两天主要在转移数据,从而不能访问。

目前,基本上已经转移好了,服务器升级工作基本完成。新服务器的升级,CPU从原来的8核升级为48核,内存从16GB升级为64GB。再次感谢国家天文台宇宙驿站给予我们的服务^_^感谢各位技术人员的努力,让我们一起把中文科普事业做得更好~

7 Feb

视频演示:费曼的茶杯

为了形象地展示为什么有些系统需要旋转720度而不是360度才能恢复原状,费曼想到了一个“茶杯法”。看了“茶杯法”的步骤之后,我突然想起了电影《太极1》的梁小龙的一个端药镜头,正好对应着费曼的“茶杯法”,遂把镜头剪了出来,供大家欣赏。

请仔细观察梁小龙的手转了多少圈?

点击阅读全文...

27 Jan

三个相切圆的公切圆

在学车的时候,我堂大哥曾问我一道作圆的问题:

三圆的外切圆和内切圆 (1)

三圆的外切圆和内切圆 (1)

平面上给出三个两两相切的圆以及它们的圆心,求作一个圆与这三个圆都相切(尺规作图)。

如果从纯几何的途径入手,我们甚至很难判断这样的圆是否存在。但是我之前似乎已经看过类似的题目,于是很快想到一个名词:反演。反演可以将圆反演成直线(圆过反演点),也可以将圆反演成圆(圆不过反演点),而其他的相切、相交等关系保持不变。对反演后的图形进行相同的反演,就变回原来的图形。本题的难点在于圆太多,利用反演,我们可以将它变为两条直线和一个圆的问题。

假设读者已经有了反演的基本知识,如果没有,请到
http://zh.wikipedia.org/wiki/反演

阅读相关内容。

点击阅读全文...

30 Jan

三个相切圆的公切圆:补充

文章《三个相切圆的公切圆》中,笔者讲到利用反演作三个相切圆的公切圆,那时要求三个圆要两两相切。后来思考了一下,发现不用这个条件,只要三个之中的一个圆与另外两个圆都相切即可。

点击阅读全文...

18 Jun

线性微分方程组:已知特解求通解

含有$n$个一阶常微分方程的一阶常微分方程组
$$\dot{\boldsymbol{x}}=\boldsymbol{A}\boldsymbol{x}$$
其中$\boldsymbol{x}=(x_1(t),\dots,x_n(t))^{T}$为待求函数,而$\boldsymbol{A}=(a_{ij}(t))_{n\times n}$为已知的函数矩阵。现在已知该方程组的$n-1$个线性无关的特解$\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_{n-1}$(解的列向量),求方程的通解。

这是我的一位同学在6月5号问我的一道题目,我当时看了一下,感觉可以通过李对称的方法很容易把解构造出来,当晚就简单分析了一下,发现根据李对称的思想,由上面已知的信息确实足以把通解构造出来。但是我尝试了好几天,尝试了几何、代数等思想,都没有很好地构造出相应的正则变量出来,从而也没有写出它的显式解,于是就搁置下来了。今天再分析这道题目时,竟在无意之间构造出了让我比较满意的解来~

点击阅读全文...

25 Feb

翻到新的维度,把积分解决!

一般来说,如果原函数容易找到的话,牛顿-莱布尼兹公式是定积分的通用方法。但是牛顿-莱布尼兹公式只适合连续函数的积分,如果积分区间含有奇点,那就不成立了。比如,我们考虑积分
$$\int_{-1}^1 \frac{1}{x^2}dx$$
当然,从严格的数学上来说,这种写法是不成立的,因为被积函数在原点没有意义。当然,从物理的角度来考虑,由于对称性,我们确信
$$\int_{-1}^1 \frac{1}{x^2}dx=2\int_{0}^1 \frac{1}{x^2}dx=\lim_{\varepsilon\to 0}2\int_{\varepsilon}^1 \frac{1}{x^2}dx$$
从而得出积分发散的结论。这种处理某种程度上是可以接受的,但是却不是让人满意的,因为它导致了分段。有什么办法可以直接处理这种情况呢?确实有的,同样引入参数,并且最终让参数为0,考虑带参数的积分
$$\int_{-1}^1 \frac{1}{x^2+\varepsilon^2}dx$$
只要参数为正,这个被积函数就在$\mathbb{R}$上处处连续了,也就是奇点消失了,这样子就可以用牛顿-莱布尼兹公式了
$$\int_{-1}^1 \frac{1}{x^2+\varepsilon^2}dx=\left.\frac{1}{\varepsilon}\arctan\left(\frac{x}{\varepsilon}\right)\right|_{-1}^{1}$$
考虑$\varepsilon\to 0$的情况,就自动得到了积分发散的结论。

点击阅读全文...

15 Mar

不求珍馐百味,但愿开水白菜

开水白菜 (1)

开水白菜 (1)

如果要用做菜来比喻人生的话,我觉得,人生最高的境界之一便是开水白菜。

点击阅读全文...

18 Mar

倒立单摆之分离频率

Mathieu方程

在文章《有质动力:倒立单摆的稳定性》中,我们分析了通过高频低幅振荡来使得倒立单摆稳定的可能性,并且得出了运动方程
$$l\ddot{\theta}+[h_0 \omega^2 \cos(\omega t)-g]\sin\theta=0$$

由此对单摆频率的下限提出了要求$\omega \gg \sqrt{\frac{g}{h_0}}$。然而,那个下限只不过是必要的,却不是充分的。如果要完整地分析该单摆的运动方程,最理想的方法当然是写出上述常微分方程的解析解。不过很遗憾,我们并没有办法做到这一点。我们只能够采取各种近似方法来求解。近似方法一般指数值计算方法,然后笔者偏爱的是解析方法,也就是说,即使是近似解,也希望能够求出近似的解析解。

点击阅读全文...