背景资料:从数字看诺贝尔物理学奖
By 苏剑林 | 2009-10-07 | 15097位读者 | 引用2009年诺贝尔物理学奖于6日公布,英国华裔科学家高锟以及美国科学家威拉德·博伊尔和乔治·史密斯摘得桂冠。以下是关于诺贝尔物理学奖的一些数字:
1、诺贝尔物理学奖从1901年开始颁奖,但并非年年颁奖,1916年、1931年、1934年、1940年、1941年和1942年都没有颁奖。之所以这6年没颁奖,是因为第一次世界大战和第二次世界大战的发生,或因为没有人符合获得诺贝尔奖的那些条件。
2、到今年为止,一名科学家独享诺贝尔物理学奖有47次,而两名科学家和三名科学家分享诺贝尔物理学奖的次数相同,都是28次。按诺贝尔基金会的规定,不会有3人以上同时获得一个奖项。
从牛顿力学角度研究宇宙学
By 苏剑林 | 2010-06-17 | 47581位读者 | 引用不少天文爱好者对宇宙学这方面的内容“听而生畏”,觉得没有爱因斯坦的广义相对论等复杂理论基础是不可理解的。的确,这种观点没有错,当前的宇宙学对宇宙的精确描述,的确是建立在广义相对论和量子力学等理论的基础之上的。BoJone也只是在书上略略浏览,根本谈不上有什么了解。但是,对于一般的天文爱好者来说,只要对牛顿力学和微积分有一定的了解,就可以对我们的宇宙有一个大概的描述,也能够得出很多令人惊喜的结论。相信进行了这项工作之后,很多爱好者都会改观:原来宇宙学也并不是那么难...并且能够得出这样的一个结论:广义相对论虽然对牛顿引力理论进行了彻底的改革,但是从数学的角度来讲,它仅仅对牛顿力学进行了修正。
从费马大定理谈起(一):背景简介
By 苏剑林 | 2014-08-15 | 27067位读者 | 引用费马大定理,也叫做费马最后定理(Fermat Last Theorem),说的是
设$n$是大于2的正整数,则不定方程$x^n+y^n=z^n$没有全不为0的整数解。
稍微阅读过数学史的朋友应该知道,该定理首先于1637年由法国业余数学家费马(Pierre de Fermat)在阅读丢番图《算术》拉丁文译本时写在第11卷第8命题旁写道。他并附加道:“我发现了一个非常漂亮的证明,但这里没有足够的空间可容纳得下。”根据后世的考证,费马或许有办法证明n=3,4,5的情形,但不大可能给出一般性的证明,因为在20世纪90年代,怀尔斯用了130页的纸张,而且用到了复杂的现代理论,才完全证明了费马大定理。所以费马当时的这一断言,更可能只是一个归纳猜测。
从费马大定理谈起(二):勾股数
By 苏剑林 | 2014-08-15 | 27941位读者 | 引用费马大定理说的是$n > 2$的情况,但是我们可以从$n=2$出发,求解到勾股数组的一般表达式,并且从中得到证明费马大定理的原始思想。
互质解
我们在实整数,也就是$\mathbb{Z}$内求解。为了求解不定方程$x^2+y^2=z^2$,首先我们注意到,这是一道齐次方程,这告诉我们,如果存在某一组解,那么可以通过同除以公约数的方法,得到一组两两互质的解。换句话说,有解必有互质解,这是$x^n+y^n=z^n$的解的通性。那么,我们假设$(x,y,z)=(a,b,c)$ 是方程$x^2+y^2=z^2$的一个互质解。
从费马大定理谈起(九):n=3
By 苏剑林 | 2014-09-01 | 28719位读者 | 引用现在可以开始$n=3$的证明了。在实整数范围内n=3的证明看起来相当复杂,而且跟n=4的证明似乎没有相通之处。然而,如果我们在$\mathbb{Z}[\omega]$中考虑$x^3+y^3+z^3=0$无解的证明,就会跟n=4时有很多类似的地方,而且事实上证明比n=4时简单(要注意在实整数范围内的证明,n=4比n=3简单。费马完成了n=4的证明,但是没完成n=3的证明。)。我想,正是这样的类似之处,才让当初还没有完成证明的数学家拉梅就自信他从这条路可以完成费马大定理的证明。(不过,这自信却是失败的案例:拉梅的路不能完全走通,而沿着这条路走得更远的当属库默,但即便这样,库默也没有证明费马大定理。)
证明跟$n=4$的第二个证明是类似的。我们先往方程中添加一个单位数,然后证明无论单位数是什么,方程在$\mathbb{Z}[\omega]$中都无解。这是一个很妙的技巧,让我们证明了更多的方程无解,但是却用到了更少的步骤。事实上,存在着只证明$x^3+y^3+z^3=0$无解的证明,但需要非常仔细地分析里边的单位数情况,这是相当麻烦的。本证明是我参考了Fermats last theorem blogspot上的证明,然后结合本系列n=4的第二个证明,简化而来,主要是减少了对单位数的仔细分析。
从费马大定理谈起(五):n=4
By 苏剑林 | 2014-08-19 | 89652位读者 | 引用从费马大定理谈起(八):艾森斯坦整数
By 苏剑林 | 2014-08-30 | 41241位读者 | 引用是时候向n=3进军了,为了证明这个情况,我们需要一个新的数环:艾森斯坦整数(Eisenstein Integer)。艾森斯坦是德国著名数学家,同时代的高斯曾经评价:“只有三个划时代的数学家:阿基米德,牛顿和艾森斯坦。”足见艾森斯坦的成就斐然。事实上,阅读费马大定理的研究史,同时也是在阅读数学名人录——没有超高的数学,几乎不可能在费马大定理中有所建树。
基本定义
跟高斯整数一样,艾森斯坦整数也是复整数的一种,其中,高斯整数是以1和$i$为基,$i$其实是一个四次单位根,也就是$x^4-1=0$的一个非实数根,因此高斯整数也叫做四次分圆整数;而艾森斯坦整数以1和$\omega$为基,$\omega$是三次单位根,也就是$x^3-1=0$的一个非实数根。任意一个艾森斯坦整数都可以记为$a+b\omega,\,a,b\in\mathbb{Z}$,艾森斯坦整数环记为$\mathbb{Z}[\omega]$,也称为三次分圆整数环。
从费马大定理谈起(七):费马平方和定理
By 苏剑林 | 2014-08-23 | 29935位读者 | 引用本想着开始准备n=3的证明,但这需要引入Eisenstein整数的概念,而我们已经引入了高斯整数,高斯整数的美妙还没有很好地展示给读者。从n=4的两个证明可以知道,引入高斯整数的作用,是把诸如$z^n-y^n$的式子进行完全分解。然而,这一点并没有给我们展示多少高斯整数的神奇。读者或许已经知道,复分析中很多简单的结果,如果单纯用实数描述出来,便会给人巧夺天工的感觉,在涉及到高斯整数的数论中也是一样。本文就让我们来思考费马平方和定理,以此再领会在高斯整数中处理某些数论问题时的便捷。——我们从费马大定理谈起,但又并不仅仅只谈费马大定理。
费马平方和定理:奇素数$p$可以表示为两个整数的平方和,当且仅当该素数具有$4k+1$的形式,而且不考虑相加顺序的情况下,表示法是唯一的。
最近评论