记录一次爬取淘宝/天猫评论数据的过程
By 苏剑林 | 2015-05-06 | 167656位读者 | 引用笔者最近迷上了数据挖掘和机器学习,要做数据分析首先得有数据才行。对于我等平民来说,最廉价的获取数据的方法,应该是用爬虫在网络上爬取数据了。本文记录一下笔者爬取天猫某商品的全过程,淘宝上面的店铺也是类似的做法,不赘述。主要是分析页面以及用Python实现简单方便的抓取。
笔者使用的工具如下
Python 3——极其方便的编程语言。选择3.x的版本是因为3.x对中文处理更加友好。
Pandas——Python的一个附加库,用于数据整理。
IE 11——分析页面请求过程(其他类似的流量监控工具亦可)。
剩下的还有requests,re,这些都是Python自带的库。
实例页面(美的某热水器):http://detail.tmall.com/item.htm?id=41464129793
【备忘】维基百科与DNSCrypt
By 苏剑林 | 2015-05-30 | 44806位读者 | 引用中文维基百科的域名zh.wikipedia.org于5月19日被关键字屏蔽和DNS污染,目前从中国已无法访问中文维基百科,中文维基百科的域名也无法解析出正确的IP地址,而英文维基百科目前未受影响,可以正常访问。
把Python脚本放到手机上定时运行
By 苏剑林 | 2015-10-21 | 41959位读者 | 引用毫无疑问,数据是数据分析的基础,而对于我等平民来说,获取大量数据的方式自然是通过爬虫采集,而对于笔者来说,写爬虫最自然的方式就是用Python写了。短短几行代码,就可以完成一个实用的爬虫,多清爽。(请参考:《记录一次爬取淘宝/天猫评论数据的过程》)
爬虫要住在哪里?
接下来的一个问题是,这个爬虫放到哪里运行?为了爬取每天更新的数据,往往需要每天都要运行一次爬虫,特别地,是在某个点定时运行。这样的话,老挂在自己的电脑运行是不大现实,因为自己的电脑总有关机的时候。也许有读者会想到放在云服务器里边,这是个方法,但是需要额外的成本。受到小虾大神的启发,我开始想把它放到路由器里边运行,某些比较好的路由器是可以外接U盘,且可以刷open-wrt系统的(一个Linux内核的路由器系统,可以像普通Linux那样装Python)。这对我来说是一种很吸引人的做法,但是我对Linux环境下的编译并不熟悉,尤其是路由器环境下的操作;另外路由器配置很低,一般都只是16M闪存、64M内存,如果没有耐心,那么是很难受得了的。
《量子力学与路径积分》习题解答V0.3
By 苏剑林 | 2015-11-18 | 18282位读者 | 引用新的《量子力学与路径积分》习题解答又放出来啦。与前两个版本不同的是,前两次更新,每次基本上完成了两章的习题,而这一次,只是增加了第6章的22道习题(第6章共有29道)。原因很多,各种忙就不说啦,主要是第6章开始,各种题目开始复杂起来,计算量也增大,虽然笔者是数学系的,可是还是前进得艰难。还有,第4、5两章加起来也只是25道习题,第6章却有29题,因此,本次更新的工作量,远远大于前两次更新的工作量。
为什么只有22题?当然是没有做完啦。为什么没有做完就更新啦?因为笔者觉得右面的题目,跟第7章的联系更为密切,因此,怕读者等不及,所以剩下的题目,跟第7章一起再发吧。
此外,我是看着中文版来做题的,中文版的翻译质量还不错,但是细微之处却有些不妥当,所以笔者要来回参考中英文版,颇累。读者可以发现,这一版中,“勘误”增加了不少。
修改了一下公式的显示方式(移动端)
By 苏剑林 | 2015-12-24 | 17711位读者 | 引用由于Li xiaobo读者再次反映了本站的公式在移动端的支持不佳问题,笔者对网站的公式显示做了一些修改。如果读者是用电脑浏览的话,那应该感觉不到网站的变化,但是如果是手机端浏览的话,那么应该会发现,原来是由MathJax解析的公式,变成了图片形式的公式。
没错,这是一个很折衷的解决办法,判断客户端,如果是移动端,就是用图片公式的显示方法,图片公式在移动端暂时没有发现错误(请大家测试。)这种方式有一些弊端,比如图片形式的公式并不是那么好看,而且,公式中的中文无法显示。
公式调用了http://latex.codecogs.com/gif.latex,在这里表示感谢。欢迎大家测试,反馈问题:http://bbs.spaces.ac.cn/topic/show/9
《量子力学与路径积分》习题解答V0.5
By 苏剑林 | 2016-04-01 | 35593位读者 | 引用习题解答继续艰难推进中,目前是0.5版本,相比0.4版,跳过了8、9章,先做了第10、11章统计力学部分的习题。
第10章有10道习题,第11章其实没有习题。看上去很少,但其实每一道习题的难度都很大。这两章的主要内容都是在用路径积分方法算统计力学中的配分函数,这本来就是一个很艰辛的课题。加上费曼在书中那形象的描述,容易让读者能够认识到大概,但是却很难算下去。事实上,这一章的习题,我参考了相当多的资料,中文的、英文的都有,才勉强完成了。
虽说是完成,但10道题目中,我只完成了9道,其中问题10-3是有困惑的,我感觉的结果跟费曼给出的不一样,因此就算不下去了。在这里提出来,希望了解的读者赐教。
OCR技术浅探:2. 背景与假设
By 苏剑林 | 2016-06-17 | 38156位读者 | 引用研究背景
关于光学字符识别(Optical Character Recognition, 下面都简称OCR),是指将图像上的文字转化为计算机可编辑的文字内容,众多的研究人员对相关的技术研究已久,也有不少成熟的OCR技术和产品产生,比如汉王OCR、ABBYY FineReader、Tesseract OCR等. 值得一提的是,ABBYY FineReader不仅正确率高(包括对中文的识别),而且还能保留大部分的排版效果,是一个非常强大的OCR商业软件.
然而,在诸多的OCR成品中,除了Tesseract OCR外,其他的都是闭源的、甚至是商业的软件,我们既无法将它们嵌入到我们自己的程序中,也无法对其进行改进. 开源的唯一选择是Google的Tesseract OCR,但它的识别效果不算很好,而且中文识别正确率偏低,有待进一步改进.
综上所述,不管是为了学术研究还是实际应用,都有必要对OCR技术进行探究和改进. 我们队伍将完整的OCR系统分为“特征提取”、“文字定位”、“光学识别”、“语言模型”四个方面,逐步进行解决,最终完成了一个可用的、完整的、用于印刷文字的OCR系统. 该系统可以初步用于电商、微信等平台的图片文字识别,以判断上面信息的真伪.
研究假设
在本文中,我们假设图像的文字部分有以下的特征:
三顾碎纸复原:基于CNN的碎纸复原
By 苏剑林 | 2016-11-25 | 37765位读者 | 引用赛题回顾
不得不说,2013年的全国数学建模竞赛中的B题真的算是数学建模竞赛中百年难得一遇的好题:题目简洁明了,含义丰富,做法多样,延伸性强,以至于我一直对它念念不忘。因为这个题目,我已经在科学空间写了两篇文章了,分别是《一个人的数学建模:碎纸复原》和《迟到一年的建模:再探碎纸复原》。以前做这道题的时候,还只有一点数学建模的知识,而自从学习了数据挖掘、尤其是深度学习之后,我一直想重做这道题,但一直偷懒。这几天终于把它实现了。
如果对题目还不清楚的读者,可以参考前面两篇文章。碎纸复原共有五个附件,分别代表了五种“碎纸片”,即五种不同粒度的碎片。其中附件1和2都不困难,难度主要集中在附件3、4、5,而3、4、5的实现难度基本是一样的。做这道题最容易想到的思路就是贪心算法,即随便选一张图片,然后找到与它最匹配的图片,然后继续匹配下一张。要想贪心算法有效,最关键是找到一个良好的距离函数,来判断两张碎片是否相邻(水平相邻,这里不考虑垂直相邻)。
最近评论