OCR技术浅探:5. 文本切割
By 苏剑林 | 2016-06-24 | 45621位读者 | 引用OCR技术浅探:7. 语言模型
By 苏剑林 | 2016-06-26 | 50080位读者 | 引用由于图像质量等原因,性能再好的识别模型,都会有识别错误的可能性,为了减少识别错误率,可以将识别问题跟统计语言模型结合起来,通过动态规划的方法给出最优的识别结果.这是改进OCR识别效果的重要方法之一.
转移概率
在我们分析实验结果的过程中,有出现这一案例.由于图像不清晰等可能的原因,导致“电视”一词被识别为“电柳”,仅用图像模型是不能很好地解决这个问题的,因为从图像模型来看,识别为“电柳”是最优的选择.但是语言模型却可以很巧妙地解决这个问题.原因很简单,基于大量的文本数据我们可以统计“电视”一词和“电柳”一词的概率,可以发现“电视”一词的概率远远大于“电柳”,因此我们会认为这个词是“电视”而不是“电柳”.
从概率的角度来看,就是对于第一个字的区域的识别结果$s_1$,我们前面的卷积神经网络给出了“电”、“宙”两个候选字(仅仅选了前两个,后面的概率太小),每个候选字的概率$W(s_1)$分别为0.99996、0.00004;第二个字的区域的识别结果$s_2$,我们前面的卷积神经网络给出了“柳”、“视”、“规”(仅仅选了前三个,后面的概率太小),每个候选字的概率$W(s_2)$分别为0.87838、0.12148、0.00012,因此,它们事实上有六种组合:“电柳”、“电视”、“电规”、“宙柳”、“宙视”、“宙规”.
OCR技术浅探:9. 代码共享(完)
By 苏剑林 | 2016-06-26 | 67980位读者 | 引用OCR技术浅探:8. 综合评估
By 苏剑林 | 2016-06-26 | 28963位读者 | 引用数据验证
尽管在测试环境下模型工作良好,但是实践是检验真理的唯一标准. 在本节中,我们通过自己的模型,与京东的测试数据进行比较验证.
衡量OCR系统的好坏有两部分内容:(1)是否成功地圈出了文字;(2)对于圈出来的文字,有没有成功识别. 我们采用评分的方法,对每一张图片的识别效果进行评分. 评分规则如下:
如果圈出的文字区域能够跟京东提供的检测样本的box文件中匹配,那么加1分,如果正确识别出文字来,另外加1分,最后每张图片的分数是前面总分除以文字总数.
按照这个规则,每张图片的评分最多是2分,最少是0分. 如果评分超过1,说明识别效果比较好了. 经过京东的测试数据比较,我们的模型平均评分大约是0.84,效果差强人意。
两个惊艳的python库:tqdm和retry
By 苏剑林 | 2016-08-13 | 65906位读者 | 引用Python基本是我目前工作、计算、数据挖掘的唯一编程语言(除了符号计算用Mathematica外)。当然,基本的Python功能并不是很强大,但它胜在有巨量的第三方扩展库。在选用Python的第三方库时,我都会经过仔细考虑,希望能挑选出最简单的、最直观的一个(因为本人比较笨,太复杂用不了)。在数据处理方面,我用得最多的是Numpy和Pandas,这两个绝对称得上王者级别的库,当然不能不提的是Scipy,但我很少直接用它,一般会通过Pandas间接调用了;可视化方面不用说是Matplotlib了;在建模方面,我会用Keras,直接上深度学习模型,Keras已经成为相当流行的深度学习框架了,如果做文本挖掘,通常还会用到jieba(分词)、Gensim(主题建模,包含了诸如word2vec之类的模型),机器学习库还有流行的Scikit Learn,但我很少用;网络方面,写爬虫我用requests,这是个人性化的网络库,如果写网站,我会用bottle,这是个单文件版的迷你框架,一切由自己定义,当然,我也不会去写什么大型网站,我就写一个简单的的接口那样而已;最后如果要并行的话,一般直接用multiprocessing。
不过,以上都不是本文要推荐的,本文要推荐的是两个可以渗透到日常写代码的库,它实现了我们平时很多时候都需要的功能,但是不用增加什么代码,绝对让人眼前一亮。
【中文分词系列】 1. 基于AC自动机的快速分词
By 苏剑林 | 2016-08-17 | 96379位读者 | 引用前言:这个暑假花了不少时间在中文分词和语言模型上面,碰了无数次壁,也得到了零星收获。打算写一个专题,分享一下心得体会。虽说是专题,但仅仅是一些笔记式的集合,并非系统的教程,请读者见谅。
中文分词
关于中文分词的介绍和重要性,我就不多说了,matrix67这里有一篇关于分词和分词算法很清晰的介绍,值得一读。在文本挖掘中,虽然已经有不少文章探索了不分词的处理方法,如本博客的《文本情感分类(三):分词 OR 不分词》,但在一般场合都会将分词作为文本挖掘的第一步,因此,一个有效的分词算法是很重要的。当然,中文分词作为第一步,已经被探索很久了,目前做的很多工作,都是总结性质的,最多是微弱的改进,并不会有很大的变化了。
目前中文分词主要有两种思路:查词典和字标注。首先,查词典的方法有:机械的最大匹配法、最少词数法,以及基于有向无环图的最大概率组合,还有基于语言模型的最大概率组合,等等。查词典的方法简单高效(得益于动态规划的思想),尤其是结合了语言模型的最大概率法,能够很好地解决歧义问题,但对于中文分词一大难度——未登录词(中文分词有两大难度:歧义和未登录词),则无法解决;为此,人们也提出了基于字标注的思路,所谓字标注,就是通过几个标记(比如4标注的是:single,单字成词;begin,多字词的开头;middle,三字以上词语的中间部分;end,多字词的结尾),把句子的正确分词法表示出来。这是一个序列(输入句子)到序列(标记序列)的过程,能够较好地解决未登录词的问题,但速度较慢,而且对于已经有了完备词典的场景下,字标注的分词效果可能也不如查词典方法。总之,各有优缺点(似乎是废话~),实际使用可能会结合两者,像结巴分词,用的是有向无环图的最大概率组合,而对于连续的单字,则使用字标注的HMM模型来识别。
从Boosting学习到神经网络:看山是山?
By 苏剑林 | 2016-07-01 | 63582位读者 | 引用前段时间在潮州给韩师的同学讲文本挖掘之余,涉猎到了Boosting学习算法,并且做了一番头脑风暴,最后把Boosting学习算法的一些本质特征思考清楚了,而且得到一些意外的结果,比如说AdaBoost算法的一些理论证明也可以用来解释神经网络模型这么强大。
AdaBoost算法
Boosting学习,属于组合模型的范畴,当然,与其说它是一个算法,倒不如说是一种解决问题的思路。以有监督的分类问题为例,它说的是可以把弱的分类器(只要准确率严格大于随机分类器)通过某种方式组合起来,就可以得到一个很优秀的分类器(理论上准确率可以100%)。AdaBoost算法是Boosting算法的一个例子,由Schapire在1996年提出,它构造了一种Boosting学习的明确的方案,并且从理论上给出了关于错误率的证明。
以二分类问题为例子,假设我们有一批样本$\{x_i,y_i\},i=1,2,\dots,n$,其中$x_i$是样本数据,有可能是多维度的输入,$y_i\in\{1,-1\}$为样本标签,这里用1和-1来描述样本标签而不是之前惯用的1和0,只是为了后面证明上的方便,没有什么特殊的含义。接着假设我们已经有了一个弱分类器$G(x)$,比如逻辑回归、SVM、决策树等,对分类器的唯一要求是它的准确率要严格大于随机(在二分类问题中就是要严格大于0.5),所谓严格大于,就是存在一个大于0的常数$\epsilon$,每次的准确率都不低于$\frac{1}{2}+\epsilon$。
【中文分词系列】 4. 基于双向LSTM的seq2seq字标注
By 苏剑林 | 2016-08-22 | 460948位读者 | 引用关于字标注法
上一篇文章谈到了分词的字标注法。要注意字标注法是很有潜力的,要不然它也不会在公开测试中取得最优的成绩了。在我看来,字标注法有效有两个主要的原因,第一个原因是它将分词问题变成了一个序列标注问题,而且这个标注是对齐的,也就是输入的字跟输出的标签是一一对应的,这在序列标注中是一个比较成熟的问题;第二个原因是这个标注法实际上已经是一个总结语义规律的过程,以4tag标注为为例,我们知道,“李”字是常用的姓氏,一半作为多字词(人名)的首字,即标记为b;而“想”由于“理想”之类的词语,也有比较高的比例标记为e,这样一来,要是“李想”两字放在一起时,即便原来词表没有“李想”一词,我们也能正确输出be,也就是识别出“李想”为一个词,也正是因为这个原因,即便是常被视为最不精确的HMM模型也能起到不错的效果。
关于标注,还有一个值得讨论的内容,就是标注的数目。常用的是4tag,事实上还有6tag和2tag,而标记分词结果最简单的方法应该是2tag,即标记“切分/不切分”就够了,但效果不好。为什么反而更多数目的tag效果更好呢?因为更多的tag实际上更全面概括了语义规律。比如,用4tag标注,我们能总结出哪些字单字成词、哪些字经常用作开头、哪些字用作末尾,但仅仅用2tag,就只能总结出哪些字经常用作开头,从归纳的角度来看,是不够全面的。但6tag跟4tag比较呢?我觉得不一定更好,6tag的意思是还要总结出哪些字作第二字、第三字,但这个总结角度是不是对的?我觉得,似乎并没有哪些字固定用于第二字或者第三字的,这个规律的总结性比首字和末字的规律弱多了(不过从新词发现的角度来看,6tag更容易发现长词。)。
最近评论