6 Aug

【不可思议的Word2Vec】6. Keras版的Word2Vec

前言

看过我之前写的TF版的Word2Vec后,Keras群里的Yin神问我有没有Keras版的。事实上在做TF版之前,我就写过Keras版的,不过没有保留,所以重写了一遍,更高效率,代码也更好看了。纯Keras代码实现Word2Vec,原理跟《【不可思议的Word2Vec】5. Tensorflow版的Word2Vec》是一样的,现在放出来,我想,会有人需要的。(比如,自己往里边加一些额外输入,然后做更好的词向量模型?)

由于Keras同时支持tensorflow、theano、cntk等多个后端,这就等价于实现了多个框架的Word2Vec了。嗯,这样想就高大上了,哈哈~

代码

点击阅读全文...

16 Oct

如何划分一个跟测试集更接近的验证集?

不管是打比赛、做实验还是搞工程,我们经常会遇到训练集与测试集分布不一致的情况。一般来说我们会从训练集中划分出来一个验证集,通过这个验证集来调整一些超参数(参考《训练集、验证集和测试集的意义》),比如控制模型的训练轮数以防止过拟合。然而,如果验证集本身跟测试集差别比较大,那么验证集上很好的模型也不代表在测试集上很好,因此如何让划分出来验证集跟测试集的分布差异更小一些,是一个值得研究的题目。

两种情况

首先,明确一下,本文所考虑的,是能给拿到测试集数据本身、但不知道测试集标签的场景。如果是那种提交模型封闭评测的场景,我们完全看不到测试集的,那就没什么办法了。为什么会出现测试集跟训练集分布不一致的现象呢?主要有两种情况。

点击阅读全文...

10 Sep

RNN模型中输入的重要性的评估

Saliency Maps for RNN

RNN是很多序列任务的不二法门,比如文本分类任务的常用方法就是“词向量+LSTM+全连接分类器”。如下图

RNN分类器

RNN分类器

假如这样的一个模型可以良好地工作,那么现在考虑一个任务是:如何衡量输入$w_1,\dots,w_n$对最终的分类结果的影响的重要程度(Saliency)呢?例如假设这是一个情感分类任务,那么怎么找出是哪些词对最终的分类有较为重要的影响呢?本文给出了一个较为直接的思路。

思路的原理很简单,因为我们是将RNN最后一步的状态向量(也就是绿色阴影所代表的向量)传递给后面的分类器进行分类的,因此最后一步的状态向量$\boldsymbol{h}_n$就是一个目标向量。而RNN是一个递推的过程,

点击阅读全文...

6 Oct

从马尔科夫过程到主方程(推导过程)

主方程(master equation)是对随机过程进行建模的重要方法,它代表着马尔科夫过程的微分形式,我们的专业主要工具之一就是主方程,说宏大一点,量子力学和统计力学等也不外乎是主方程的一个特例。

然而,笔者阅读了几个著作,比如《统计物理现代教程》,还有我导师的《生物系统的随机动力学》,我发现这些著作对于主方程的推导都很模糊,他们在着力解释结果的意义,但并不说明结果的思想来源,因此其过程难以让人信服。而知乎上有人提问《如何理解马尔科夫过程的主方程的推导过程?》但没有得到很好的答案,也表明了这个事实。

马尔可夫过程

主方程是用来描述马尔科夫过程的,而马尔科夫过程可以理解为运动的无记忆性,说通俗点,就是下一刻的概率分布,只跟当前时刻有关,跟历史状态无关。用概率公式写出来就是(这里只考虑连续型概率,因此这里的$p$是概率密度):
$$\begin{equation}\label{eq:maerkefu}p(x,\tau)=\int p(x,\tau|y,t) p(y,t) dy\end{equation}$$
这里的积分区域是全空间。这里的$p(x,\tau|y,t)$称为跃迁概率,即已经确定了$t$时刻来到了$y$位置后、在$\tau$时刻达到$x$的概率密度,这个式子的物理意义是很明显的,就不多做解释了。

点击阅读全文...

19 Nov

更别致的词向量模型(三):描述相关的模型

几何词向量

上述“月老”之云虽说只是幻想,但所面临的问题却是真实的。按照传统NLP的手段,我们可以统计任意两个词的共现频率以及每个词自身的频率,然后去算它们的相关度,从而得到一个“相关度矩阵”。然而正如前面所说,这个共现矩阵太庞大了,必须压缩降维,同时还要做数据平滑,给未出现的词对的相关度赋予一个合理的估值。

在已有的机器学习方案中,我们已经有一些对庞大的矩阵降维的经验了,比如SVD和pLSA,SVD是对任意矩阵的降维,而pLSA是对转移概率矩阵$P(j|i)$的降维,两者的思想是类似的,都是将一个大矩阵$\boldsymbol{A}$分解为两个小矩阵的乘积$\boldsymbol{A}\approx\boldsymbol{B}\boldsymbol{C}$,其中$\boldsymbol{B}$的行数等于$\boldsymbol{A}$的行数,$\boldsymbol{C}$的列数等于$\boldsymbol{A}$的列数,而它们本身的大小则远小于$\boldsymbol{A}$的大小。如果对$\boldsymbol{B},\boldsymbol{C}$不做约束,那么就是SVD;如果对$\boldsymbol{B},\boldsymbol{C}$做正定归一化约束,那就是pLSA。

但是如果是相关度矩阵,那么情况不大一样,它是正定的但不是归一的,我们需要为它设计一个新的压缩方案。借鉴矩阵分解的经验,我们可以设想把所有的词都放在$n$维空间中,也就是用$n$维空间中的一个向量来表示,并假设它们的相关度就是内积的某个函数(为什么是内积?因为矩阵乘法本身就是不断地做内积):
\[\frac{P(w_i,w_j)}{P(w_i)P(w_j)}=f\big(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle\big)\tag{8}\]
其中加粗的$\boldsymbol{v}_i, \boldsymbol{v}_j$表示词$w_i,w_j$对应的词向量。从几何的角度看,我们就是把词语放置到了$n$维空间中,用空间中的点来表示一个词。

因为几何给我们的感觉是直观的,而语义给我们的感觉是复杂的,因此,理想情况下我们希望能够通过几何关系来反映语义关系。下面我们就根据我们所希望的几何特性,来确定待定的函数$f$。事实上,glove词向量的那篇论文中做过类似的事情,很有启发性,但glove的推导实在是不怎么好看。请留意,这里的观点是新颖的——从我们希望的性质,来确定我们的模型,而不是反过来有了模型再推导性质

机场-飞机+火车=火车站

点击阅读全文...

19 Nov

更别致的词向量模型(四):模型的求解

损失函数

现在,我们来定义loss,以便把各个词向量求解出来。用$\tilde{P}$表示$P$的频率估计值,那么我们可以直接以下式为loss
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle-\log\frac{\tilde{P}(w_i,w_j)}{\tilde{P}(w_i)\tilde{P}(w_j)}\right)^2\tag{16}\]
相比之下,无论在参数量还是模型形式上,这个做法都比glove要简单,因此称之为simpler glove。glove模型是
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log X_{ij}\right)^2\tag{17}\]
在glove模型中,对中心词向量和上下文向量做了区分,然后最后模型建议输出的是两套词向量的求和,据说这效果会更好,这是一个比较勉强的trick,但也不是什么毛病。最大的问题是参数$b_i,\hat{b}_j$也是可训练的,这使得模型是严重不适定的!我们有
\[\begin{aligned}&\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log \tilde{P}(w_i,w_j)\right)^2\\
=&\sum_{w_i,w_j}\left[\langle \boldsymbol{v}_i+\boldsymbol{c}, \boldsymbol{\hat{v}}_j+\boldsymbol{c}\rangle+\Big(b_i-\langle \boldsymbol{v}_i, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)\right.\\
&\qquad\qquad\qquad\qquad\left.+\Big(\hat{b}_j-\langle \boldsymbol{\hat{v}}_j, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)-\log X_{ij}\right]^2\end{aligned}\tag{18}\]
这就是说,如果你有了一组解,那么你将所有词向量加上任意一个常数向量后,它还是一组解!这个问题就严重了,我们无法预估得到的是哪组解,一旦加上的是一个非常大的常向量,那么各种度量都没意义了(比如任意两个词的cos值都接近1)。事实上,对glove生成的词向量进行验算就可以发现,glove生成的词向量,停用词的模长远大于一般词的模长,也就是说一堆词放在一起时,停用词的作用还明显些,这显然是不利用后续模型的优化的。(虽然从目前的关于glove的实验结果来看,是我强迫症了一些。)

互信息估算

点击阅读全文...

25 Nov

果壳中的条件随机场(CRF In A Nutshell)

本文希望用尽可能简短的语言把CRF(条件随机场,Conditional Random Field)的原理讲清楚,这里In A Nutshell在英文中其实有“导论”、“科普”等意思(霍金写过一本《果壳中的宇宙》,这里东施效颦一下)。

网上介绍CRF的文章,不管中文英文的,基本上都是先说一些概率图的概念,然后引入特征的指数公式,然后就说这是CRF。所谓“概率图”,只是一个形象理解的说法,然而如果原理上说不到点上,你说太多形象的比喻,反而让人糊里糊涂,以为你只是在装逼。(说到这里我又想怼一下了,求解神经网络,明明就是求一下梯度,然后迭代一下,这多好理解,偏偏还弄个装逼的名字叫“反向传播”,如果不说清楚它的本质是求导和迭代求解,一下子就说反向传播,有多少读者会懂?)

好了,废话说完了,来进入正题。

逐标签Softmax

CRF常见于序列标注相关的任务中。假如我们的模型输入为$Q$,输出目标是一个序列$a_1,a_2,\dots,a_n$,那么按照我们通常的建模逻辑,我们当然是希望目标序列的概率最大
$$P(a_1,a_2,\dots,a_n|Q)$$
不管用传统方法还是用深度学习方法,直接对完整的序列建模是比较艰难的,因此我们通常会使用一些假设来简化它,比如直接使用朴素假设,就得到
$$P(a_1,a_2,\dots,a_n|Q)=P(a_1|Q)P(a_2|Q)\dots P(a_n|Q)$$

点击阅读全文...

28 Mar

变分自编码器(二):从贝叶斯观点出发

源起

前几天写了博文《变分自编码器(一):原来是这么一回事》,从一种比较通俗的观点来理解变分自编码器(VAE),在那篇文章的视角中,VAE跟普通的自编码器差别不大,无非是多加了噪声并对噪声做了约束。然而,当初我想要弄懂VAE的初衷,是想看看究竟贝叶斯学派的概率图模型究竟是如何与深度学习结合来发挥作用的,如果仅仅是得到一个通俗的理解,那显然是不够的。

所以我对VAE继续思考了几天,试图用更一般的、概率化的语言来把VAE说清楚。事实上,这种思考也能回答通俗理解中无法解答的问题,比如重构损失用MSE好还是交叉熵好、重构损失和KL损失应该怎么平衡,等等。

建议在阅读《变分自编码器(一):原来是这么一回事》后对本文进行阅读,本文在内容上尽量不与前文重复。

准备

在进入对VAE的描述之前,我觉得有必要把一些概念性的内容讲一下。

点击阅读全文...