29 Sep

第1000篇文章

后台提示,本文是科学空间的第1000篇文章。

本想写下一篇文章的,但是看到这个提示,就先瞎写个水文纪念一下。都说人老了就喜欢各种感叹,这话还真不假。看到别人高考来个感想,博客十周年了来个感想,现在第1000篇文章了也来个感想,似乎总想找点理由感叹一下一样。那今天又能扯些啥犊子呢?

1000

1000

首先,自恋一下。1000篇文章,如果要印刷下来,就算每篇文章印一页,那也能印个1000页了,相信不少人都没捧起过1000页的书吧(我还真读过,有文章为证:《哈哈,我的“〈圣经〉”到了》),我居然能写个1000篇,也是挺佩服自己的。当然,早期的文章有部分是转载的,不是全部都自己写的,不过还是坚持了不少原创内容,而且就算是转载的也是经过自己编辑整理的,不算纯Copy,所以也勉强能说的过去吧。

然后,庆幸一下。博客开始的主题是天文和科普,后来慢慢偏向了理论物理和数学,现在则偏向了机器学习,但不管怎样,总算很庆幸地在科学这条路坚持了下来。虽然没有像幼时设想的那样成为一名真正的自然科学家/数学家,但终究有点相关,闲时依然可以做做科学计算,勉强也对得起当初的梦想。

点击阅读全文...

6 Sep

四次方程的根式求解(通俗版)

前些时间发表了三次方程的一般求解 ,并通过了维基百科链接到了这里来,想不到带来了很多的人气,看到大家还是比较需要这方面的资料的。在此之前曾经承诺过会把4次方程的求根公式也写出来,现在终于有时间了,就此一写,希望能够为大家带来帮助。

$$ax^4+bx^3+cx^2+dx+e=0(a!=0)$$

仍然是这两句话:网上的资料中,一是缺乏描述专业数学公式的相关程序(很多网站都是这样);二是语言过于专业,不能大众化(如维基百科)。如果一开始我就去看wiki,那么我保证我到现在还不能弄懂。

点击阅读全文...

6 Mar

(原创)切抛物线法解方程

牛顿法使用的是函数切线的方程的零点来逼近原函数的零点,他所使用的是“切直线”,要是改为同曲率的“切抛物线”,则有更稳定的收敛效果以及更快的收敛速度

设函数$y=f(x)$在$(x_0,y_0)$处有一条“切抛物线”$y=ax^2+bx+c$,则应该有

$a(x_0+\Delta x)^2+b(x_0+\Delta x)+c=f(x_0+\Delta x)$-------(A)
$ax_0^2+bx_0+c=f(x_0)$-------(B)
$a(x_0-\Delta x)^2+b(x_0-\Delta x)+c=f(x_0-\Delta x)$-------(C)

其中$lim_{\Delta x->0}$

点击阅读全文...

18 Jun

线性微分方程组:已知特解求通解

含有$n$个一阶常微分方程的一阶常微分方程组
$$\dot{\boldsymbol{x}}=\boldsymbol{A}\boldsymbol{x}$$
其中$\boldsymbol{x}=(x_1(t),\dots,x_n(t))^{T}$为待求函数,而$\boldsymbol{A}=(a_{ij}(t))_{n\times n}$为已知的函数矩阵。现在已知该方程组的$n-1$个线性无关的特解$\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_{n-1}$(解的列向量),求方程的通解。

这是我的一位同学在6月5号问我的一道题目,我当时看了一下,感觉可以通过李对称的方法很容易把解构造出来,当晚就简单分析了一下,发现根据李对称的思想,由上面已知的信息确实足以把通解构造出来。但是我尝试了好几天,尝试了几何、代数等思想,都没有很好地构造出相应的正则变量出来,从而也没有写出它的显式解,于是就搁置下来了。今天再分析这道题目时,竟在无意之间构造出了让我比较满意的解来~

点击阅读全文...

7 Dec

一阶偏微分方程的特征线法

本文以尽可能清晰、简明的方式来介绍了一阶偏微分方程的特征线法。个人认为这是偏微分方程理论中较为简单但事实上又容易让人含糊的一部分内容,因此尝试以自己的文字来做一番介绍。当然,更准确来说其实是笔者自己的备忘。

拟线性情形

一般步骤

考虑偏微分方程
$$\begin{equation}\boldsymbol{\alpha}(\boldsymbol{x},u) \cdot \frac{\partial}{\partial \boldsymbol{x}} u = \beta(\boldsymbol{x},u)\end{equation}$$
其中$\boldsymbol{\alpha}$是一个$n$维向量函数,$\beta$是一个标量函数,$\cdot$是向量的点积,$u\equiv u(\boldsymbol{x})$是$n$元函数,$\boldsymbol{x}$是它的自变量。

点击阅读全文...

13 Nov

ARXIV数学论文分布:偏微分方程最热门!

笔者成功地保研到了中山大学的基础数学专业,这个专业自然是比较理论性的,虽然如此,我还会保持着我对数据分析、计算机等方面的兴趣。这几天兴致来了,想做一下结合我的专业跟数据挖掘相结合的研究,所以就爬取了ARXIV上面近五年(2010年到2014年)的数学论文(包含的数据有:标题、分类、年份、月份),想对这几年来数学的“行情”做一下简单的分析。个人认为,ARVIX作为目前全球最大的论文预印本的电子数据库,对它的数据进行分析,所得到的结论是能够具有一定的代表性的。

当然,本文只是用来练手爬虫和基本数据分析的文章,并没有挖掘出特别有价值的信息。文末附录了笔者爬取到的数据,供有兴趣的读者进一步分析研究。

整体情况

这五年来,ARXIV的数学论文总数为135009篇,平均每年27000篇,或者每天74篇。

点击阅读全文...

9 Apr

一个非线性差分方程的隐函数解

问题来源

笔者经常学习的数学研发论坛曾有一帖讨论下述非线性差分方程的渐近求解:
$$a_{n+1}=a_n+\frac{1}{a_n^2},\, a_1=1$$
原帖子在这里,从这帖子中我获益良多,学习到了很多新技巧。主要思路是通过将两边立方,然后设$x_n=a_n^3$,变为等价的递推问题:
$$x_{n+1}=x_n+3+\frac{3}{x_n}+\frac{1}{x_n^2},\,x_1=1$$
然后可以通过巧妙的技巧得到渐近展开式:
$$x_n = 3n+\ln n+a+\frac{\frac{1}{3}(\ln n+a)-\frac{5}{18}}{n}+\dots$$
具体过程就不提了,读者可以自行到上述帖子学习。

然而,这种形式的解虽然精妙,但存在一些笔者不是很满意的地方:

1、解是渐近的级数,这就意味着实际上收敛半径为0;
2、是$n^{-k}$形式的解,对于较小的$n$难以计算,这都使得高精度计算变得比较困难;
3、当然,题目本来的目的是渐近计算,但是渐近分析似乎又没有必要展开那么多项;
4、里边带有了一个本来就比较难计算的极限值$a$;
5、求解过程似乎稍欠直观。

当然,上面这些缺点,有些是鸡蛋里挑骨头的。不过,也正是这些缺点,促使我寻找更好的形式的解,最终导致了这篇文章。

点击阅读全文...

20 Feb

熵的形象来源与熵的妙用

在拙作《“熵”不起:从熵、最大熵原理到最大熵模型(一)》中,笔者从比较“专业”的角度引出了熵,并对熵做了诠释。当然,熵作为不确定性的度量,应该具有更通俗、更形象的来源,本文就是试图补充这一部分,并由此给出一些妙用。

熵的形象来源

我们考虑由0-9这十个数字组成的自然数,如果要求小于10000的话,那么很自然有10000个,如果我们说“某个小于10000的自然数”,那么0~9999都有可能出现,那么10000便是这件事的不确定性的一个度量。类似地,考虑$n$个不同元素(可重复使用)组成的长度为$m$的序列,那么这个序列有$n^m$种情况,这时$n^m$也是这件事情的不确定性的度量。

$n^m$是指数形式的,数字可能异常地大,因此我们取了对数,得到$m\log n$,这也可以作为不确定性的度量,它跟我们原来熵的定义是一致的。因为
$$m\log n=-\sum_{i=1}^{n^m} \frac{1}{n^m}\log \frac{1}{n^m}$$

读者可能会疑惑,$n^m$和$m\log n$都算是不确定性的度量,那么究竟是什么原因决定了我们用$m\log n$而不是用$n^m$呢?答案是可加性。取对数后的度量具有可加性,方便我们运算。当然,可加性只是便利的要求,并不是必然的。如果使用$n^m$形式,那么就相应地具有可乘性。

点击阅读全文...