4 Apr

数值方法解方程之终极算法

呵呵,做了一回标题党,可能说得夸张了一点。说是“终极算法”,主要是因为它可以任意提高精度、而且几乎可以应付任何非线性方程(至少理论上是这样),提高精度是已知的迭代式上添加一些项,而不是完全改变迭代式的形式,当然在提高精度的同时,计算量也会随之增大。其理论基础依旧是泰勒级数。

我们考虑方程$x=f(y)$,已知y求x是很容易的,但是已知x求y并不容易。我们考虑把y在$(x_0,y_0)$处展开成x的的泰勒级数。关键是求出y的n阶导数$\frac{d^n y}{dx^n}$。我们记$f^{(n)}(y)=\frac{d^n x}{dy^n}$,并且有
$$\frac{dy}{dx}=\frac{1}{(\frac{dx}{dy})}=f'(y)^{-1}$$

点击阅读全文...

20 Mar

《方程与宇宙》:二体问题的来来去去(一)

二体问题的轨道模拟

二体问题的轨道模拟

为了让大家能够查询到“天体力学”方面的内容,同时锻炼我的表达和计算能力,BoJone构思了《方程与宇宙》这个主题,主要是写一些关于使用数学相对深入地讨论一些天文问题。其实我一直觉得,不用公式是无法完美地描述科学的(当然也不能纯公式),我记得霍金的《时间简史》以及《果壳中的宇宙》等之类的书,都力求不用或者尽可能少用数学公式来表达自己的观点。这种模式对于对于公众来说是很好的,但是对于希望深入研究的朋友来说却难以进行。所以我主张:宇宙是算出来的!

这个主题每一个字都是由BoJone敲击出来的,其中包括引用了《天体力学引论》里面的一些内容,以及加入了BoJone个人的一些见解。由于篇幅长及时间有限问题,BoJone打算分若干次撰写发布,并且尽可能写得通俗一点,力求让有一点微积分基础的朋友就可以弄懂。这里首先发布第一部分。由于时间匆忙等原因,可能会出现一些疏忽,欢迎大家挑错!

点击阅读全文...

6 Mar

(原创)切抛物线法解方程

牛顿法使用的是函数切线的方程的零点来逼近原函数的零点,他所使用的是“切直线”,要是改为同曲率的“切抛物线”,则有更稳定的收敛效果以及更快的收敛速度

设函数$y=f(x)$在$(x_0,y_0)$处有一条“切抛物线”$y=ax^2+bx+c$,则应该有

$a(x_0+\Delta x)^2+b(x_0+\Delta x)+c=f(x_0+\Delta x)$-------(A)
$ax_0^2+bx_0+c=f(x_0)$-------(B)
$a(x_0-\Delta x)^2+b(x_0-\Delta x)+c=f(x_0-\Delta x)$-------(C)

其中$lim_{\Delta x->0}$

点击阅读全文...

27 Feb

“n次方程有n个根”的证明

代数基本定理:任何一个一元复系数多项式都至少有一个复数根。也就是说,复数域是代数封闭的。

虽说这有其名,但却无其实,它并不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理(Fundamental theorem of algebra)。

建立在此前提上,我们可以推出:

一元复系数n次代数方程在复数范围内都有n个根(有可能是共轨复根)。

点击阅读全文...

13 Feb

MathPlayer 2.2发布,大家升级啦!

如果你已经安装了MathPlayer,就这里检查一下你的版本是否最新版:
http://www.dessci.com/en/products/mathplayer/check.htm

如果你还没有安装,欢迎你点击下面的链接下载安装:
http://www.dessci.com/en/products/mathplayer/download.htm

点击阅读全文...

9 Feb

函数图像旋转公式(“想当然”的教训)

阅读小提示:亲爱的读者,你可以选择不读这篇文章,但如果你选择了阅读,请一定要阅读完。BoJone对“半途而废”所造成的后果一概不负责任^_^。

函数图像旋转

函数图像旋转

我们来考虑下一个旋转问题:将某一函数图像y=f(x),绕点(p,q)逆时针旋转了θ角之后,得到的图象的解析式。

点击阅读全文...

6 Feb

直上云霄的无穷指数方程

昨天在浏览网页的时候,发现了一道有趣的方程:
$$x^{x^{x^{\dots}}}=2$$
各位读者先别急着往下看,不妨自己求解一下?

点击阅读全文...

4 Feb

400多本数学电子书籍(供下载)

转自:http://bbs.emath.ac.cn/redirect.php?tid=1989

来源:http://cid-ec227156e4cad4ab.profile.live.com/

不论是对于学习高等数学还是初中数学,里面都有不少数学精品。BoJone一发现,便用Thunder下了一大堆(正好满足了我加强“数学分析”的需要),并立即与大家分享了。资源储存在微软的网盘,按常理来说不存在链接失效的问题,不过BoJone建议需要的读者还是尽快下载到自己的电脑上,毕竟这样更加保险,因为或许哪一天作者不愿意共享了,那就“走宝”了,呵呵。

点击阅读全文...