“n次方程有n个根”的证明
By 苏剑林 | 2010-02-27 | 70150位读者 | 引用MathPlayer 2.2发布,大家升级啦!
By 苏剑林 | 2010-02-13 | 19317位读者 | 引用如果你已经安装了MathPlayer,就这里检查一下你的版本是否最新版:
http://www.dessci.com/en/products/mathplayer/check.htm
如果你还没有安装,欢迎你点击下面的链接下载安装:
http://www.dessci.com/en/products/mathplayer/download.htm
函数图像旋转公式(“想当然”的教训)
By 苏剑林 | 2010-02-09 | 100036位读者 | 引用直上云霄的无穷指数方程
By 苏剑林 | 2010-02-06 | 29880位读者 | 引用400多本数学电子书籍(供下载)
By 苏剑林 | 2010-02-04 | 79302位读者 | 引用转自:http://bbs.emath.ac.cn/redirect.php?tid=1989
来源:http://cid-ec227156e4cad4ab.profile.live.com/
不论是对于学习高等数学还是初中数学,里面都有不少数学精品。BoJone一发现,便用Thunder下了一大堆(正好满足了我加强“数学分析”的需要),并立即与大家分享了。资源储存在微软的网盘,按常理来说不存在链接失效的问题,不过BoJone建议需要的读者还是尽快下载到自己的电脑上,毕竟这样更加保险,因为或许哪一天作者不愿意共享了,那就“走宝”了,呵呵。
精确自由落体运动定律的讨论(二)
By 苏剑林 | 2010-01-09 | 54614位读者 | 引用之前在这篇文章中,我们使用过一个牛顿引力场中的自由落体公式:
$t=\sqrt{\frac{r_0}{2GM}}{r_0 \cdot arctg \sqrt{\frac{r_0 -r}{r}}+\sqrt{r(r_0 -r)}}$——(1)
我们来尝试一下推导出这个公式来。同时,站长在逐渐深入研究的过程中,发现微分方程极其重要。以前一些我认为不可能解决的问题,都用微分方程逐渐解决了。在以后的文章里,我们将会继续体验到微分方程的伟大魔力!因此,建议各位有志研究物理学的朋友,一定要掌握微分方程,更加深入的,需要用到偏微分方程!
首先,质量为m的物理在距离地心r处的引力为$\frac{GMm}{r^2}$,根据牛顿第二定律F=ma,自然下落的物体所获得的加速度为$\frac{GM}{r^2}$。假设物体从距离地心r开始向地心自由下落,求位移s关于t的函数s=s(t).
最近评论