2 Feb

喜迎新春!兔年快乐!2011~

“兔”气扬眉

“兔”气扬眉

Happy the Spring Festival !
时间过得真快,想不到科学空间建立都快两年了...这两年有大家相伴,在科学之旅上增趣了不少。BoJone祝大家春节愉快,身体健康,心想事成!
(孩子们多收红包,大人们多派红包,呵呵^_^)

点击阅读全文...

1 Feb

新春快乐!2011年2月重要天象

相对于其他月份,2月的天空总显得有些寂寞。不过,这并不影响我们开心的情绪。因为通常中国最重要的节日——春节都发生在二月,今年也不例外。春节是农历年的开始,对中国人来说,它才是真正的2011的第一天!新年伊始,科学空间大家天天快乐,心想事成,愿BoJone的人生之旅上能够一直与各位科学爱好者相伴。

天象大观:

01日 金星距太阳: 45.4° W
05日 00:49 火星合日
08日 半人马α流星雨极大
12日 05:32 月合昴宿星团: 1.5° N
17日 17:15 海王星合日
22日 09:02 月合角宿一: 2.8° N
25日 13:26 月合心宿二: 2.9° S
25日 16:27 水星上合日.

点击阅读全文...

26 Jan

唠叨下,关于三体问题周期轨道

自从查看到有一个8字形的周期轨道后,就对三体问题的周期轨道产生了浓厚的兴趣。而看到此文后,兴趣就倍增了。原来无法直接积分的三体问题还有这么多有趣的东西....所以寒假的一个研究目标就是三体问题的周期轨道。

先报告一下目前的探索结果:

1、有了自己的一个求周期轨道的方法;
2、貌似已经解出了8字的轨道方程,但是还未知正确与否;
3、好像发现了更多的周期轨道,也未知正确与否(这些都在验证中)

点击阅读全文...

20 Jan

《方程与宇宙》:三体问题和它的初积分(六)

The Three Body Problem and its Classical Integration

很多天文爱好者都已经接触到了“二体问题”(我们在高中学习到的“开普勒三定律”就是内容之一),由于在太阳系中行星质量相对较小而且距离相对较远,应用“二体问题”的解对天体进行计算、预报等能够满足一定的近似需求。不过,如果需要更高精度的计算,就不能把其他行星的引力给忽略掉了,于是就产生了所谓N体问题(N-Body Problem),即N个质点尽在它们各自引力的相互作用下的运动规律问题。最简单的二体已经被彻底解决,而三体或更多体的问题则与二体大相径庭,因为庞加莱证明了,三体问题不能严格求解,而且这是一个混沌系统,任何微小的扰动都会造成不可预期的效果。

根据牛顿力学,选择惯性参考系,设三个质点分别为$M_1,M_2,M_3$,向径分别为$\vec{r_1},\vec{r_2},\vec{r_3}$,可以列出运动方程(以下的导数都默认是对时间t求导)

点击阅读全文...

19 Jan

寒假来了...

考完昨天下午的英语,就收拾东西回家,开始寒假之旅...

不论如何,假日的日子总是需要珍惜,尤其这是高中阶段最后一个长假了。

这个假期把心思放到英语常微分方程上,重点研究一些特殊性的三体问题,如周期解、共线解等。希望读者多多支持,呵呵!还有抽多点时间来与各位天文爱好者交流天文,以及更新整理一下天文奥赛网。

加油!BoJone.

9 Jan

不可能事件——一道经典电磁感应题的错误

相信高二理科的学生都会做过这样的一道题目:

光滑导轨-电磁感应

光滑导轨-电磁感应

水平放置于匀强磁场中的光滑导轨上,磁感应强度为B,平衡导轨的距离为L,有一根导体棒ab,用恒力F作用在ab上,由静止开始运动,回路总电阻为R,求ab的最大速度。

对于高二学生来说,这样的题目是很好解决的。只要列出
$E=BLv,I=\frac{E}{R},f_1=BIL$,并根据当匀速运动时速度最大,由受力平衡有$f_1=F$,解得
(E:感应电动势;I:感应电流;f1:安培力)
$$v=\frac{FR}{B^2 L^2}$$

点击阅读全文...

8 Jan

三连杆装置曲线方程

本创意装置来自牧夫天文论坛的zhangyf1997同好。

三连杆装置——“鱼”

三连杆装置——“鱼”

结构:
1、A、B为两定点,可看作有刚性杆连接;
2、AC为动力杆,绕点A转动;
3、BD为从动杆,CD为连杆。

长度数据:
1、CD=AB=$\sqrt{2}$;
2、AC=BD=1。
3、E是CD中点

求:E点的轨迹方程(即图中黑色那条,很有趣吧?)

点击阅读全文...

2 Jan

[2011]一睹“食”的风采

2011年地球上将会发生6次“食”,其中包括四次日偏食和两次月全食。日偏食中有两次发生在遥远的南极,基本上无人可睹,其余的两次在我国的观测条件都不理想。其中1月4日那次在西北部可见,6月2日(北京时间是06.02,世界时是06.01)那次在东北部可见。

当然,上帝是公平的,我们没有比较好的日食观测,但能够观测到两次比较好的月全食。这分别发生在06.16和12.10,其中06.16那次,能够看到带食月落,而12.10那次则是全程可见。

心动了吧?让我们一同期待,那个晴朗的夜晚!

点击阅读全文...