历史上的谜案——刘徽有没有使用外推法?
By 苏剑林 | 2011-03-12 | 30190位读者 | 引用话说当年我国古代数学家刘徽创立“割圆术”计算圆周率的事迹,在今天已被不少学生知晓;虽不能说家喻户晓,但是也为各教科书以及老师津津乐道。和古希腊的“数学之神”阿基米德同出一辙,刘徽也是使用圆的内接、外切正多边形来逼近圆形的;不一样的是,刘徽使用的方法是计算半径为1的圆的内接、外切正多边形的面积,而阿基米德计算的则是直径为1的圆的内接、外切正多边形的周长。两者的计算效果有什么区别呢?其实阿基米德的方法应该更快一点,阿基米德算到正n边形所得到的值,相当于刘徽算到正2n边形了。
在此我们不再对两者的计算方法进行区分,因为两者的本质都是一样的。按照现代数学的写法,“割圆术”的理论依据是
$$lim_{n\to \infty} n \sin(\frac{\pi}{n})=\pi\tag{1}$$
当然,刘徽不可能有现代计算正弦函数值的公式(现在计算正弦函数值一般用泰勒级数展开,而泰勒级数展开需要用到$\pi$的值),甚至在他那个时代就连笔墨也没有,据我所知即使是后来的祖冲之推算圆周率时,唯一的计算工具也只是现在称为“算筹”的小棍。不过刘徽还是凭借着超强的毅力,利用递推的方法逐步求圆周率。
【NASA每日一图】神秘的Voynich(伏尼契)手稿
By 苏剑林 | 2010-01-31 | 29571位读者 | 引用2012年,地球完蛋了?
By 苏剑林 | 2009-10-25 | 29722位读者 | 引用神奇的麦田圈坐标图片之谜
By 苏剑林 | 2009-09-15 | 31232位读者 | 引用三百年之谜——费马大定理(历史+证明)
By 苏剑林 | 2009-07-28 | 20579位读者 | 引用在“数学研发论坛”看到了,感到不错,转给大家!
原文是:http://bbs.emath.ac.cn/thread-1651-1-1.html
费马大定理,主要是指:
方程$x^n+y^n=z^n(n>=3,n \in R^+)$,x,y,z不可能同时为正整数。
具体内容请看:
http://zh.wikipedia.org/wiki/%E8%B4%B9%E9%A9%AC%E5%A4%A7%E5%AE%9A%E7%90%86
企图减缓美国数学进展的“阴谋”
By 苏剑林 | 2009-07-26 | 23584位读者 | 引用宇宙中存在所谓的“黑洞”,只要你步入了它的视界之内,就永远也出不去了(除非你能够超光速)。在数学中,也有类似的规则,只要把一个自然数代入这个规则,都无一不会陷入无限的循环之中,这样称之为“数字黑洞”。有一个“数字黑洞”,它令人十分着迷,甚至有人称它为“企图减缓美国数学进展的阴谋”——这就是“冰雹猜想”。
冰雹猜想:
任选一个自然数。当选定的自然数是偶数,将它除以2,如是奇数,将它乘以3加上1;当变换后的自然数成了偶数,再将它除以2,如成了奇数,再将它乘以3加上1,连续进行下去,最后都“落叶归根”——变成了1。
最近评论